Advanced Search+
David BAILIE, Cormac HYLAND, Raj L SINGH, Steven WHITE, Gianluca SARRI, Francis P KEENAN, David RILEY, Steven J ROSE, Edward G HILL, Feilu WANG (王菲鹿), Dawei YUAN (袁大伟), Gang ZHAO (赵刚), Huigang WEI (魏会冈), Bo HAN (韩波), Baoqiang ZHU (朱宝强), Jianqiang ZHU (朱健强), Pengqian YANG (杨朋千). An investigation of the L-shell x-ray conversion efficiency for laser-irradiated tin foils[J]. Plasma Science and Technology, 2020, 22(4): 45201-045201. DOI: 10.1088/2058-6272/ab6188
Citation: David BAILIE, Cormac HYLAND, Raj L SINGH, Steven WHITE, Gianluca SARRI, Francis P KEENAN, David RILEY, Steven J ROSE, Edward G HILL, Feilu WANG (王菲鹿), Dawei YUAN (袁大伟), Gang ZHAO (赵刚), Huigang WEI (魏会冈), Bo HAN (韩波), Baoqiang ZHU (朱宝强), Jianqiang ZHU (朱健强), Pengqian YANG (杨朋千). An investigation of the L-shell x-ray conversion efficiency for laser-irradiated tin foils[J]. Plasma Science and Technology, 2020, 22(4): 45201-045201. DOI: 10.1088/2058-6272/ab6188

An investigation of the L-shell x-ray conversion efficiency for laser-irradiated tin foils

Funds: This work was supported by the UK Science and Technology Facilities Council, National Natural Science Foundation of China (No. 11573040) and Science Challenge Project (No. TZ2016005) and The Royal Society International Exchange (No. IE161039).
More Information
  • Received Date: July 04, 2019
  • Revised Date: December 12, 2019
  • Accepted Date: December 12, 2019
  • We have used the Shenguang II laser in third harmonic (351 nm) to investigate the emission of L-shell radiation in the 3.3–4.4 keV range generated using thin foils of Sn coated onto a parylene substrate with irradiation of order 1015 Wcm−2 and nanosecond pulse duration. In our experiment, we have concentrated on assessing the emission on the non-laser irradiated side as this allows an experimental geometry relevant to experiments on photo-ionised plasmas where a secondary target must be placed close to the source, to achieve x-ray fluxes appropriate to astrophysical objects. Overall L-shell conversion efficiencies are estimated to be of order 1%, with little dependence on Sn thickness between 400 and 800 nm.
  • [1]
    Glenzer S H and Redmer R 2009 Rev. Mod. Phys. 81 1625
    [2]
    Woolsey N C, Riley D and Nardi E 1998 Rev. Sci. Instrum.69 418
    [3]
    Bradley D K et al 1987 Phys. Rev. Lett. 59 2995
    [4]
    Lindl J D et al 2004 Phys. Plasmas 11 339
    [5]
    Löwer T H et al 1994 Phys. Rev. Lett. 72 3186
    [6]
    Foord M E et al 2004 Phys. Rev. Lett. 93 055002
    [7]
    Phillion D W and Hailey C J 1986 Phys. Rev. A 34 4886
    [8]
    Fournier K B et al 2004 Phys. Rev. Lett. 92 165005
    [9]
    Riley D et al 2002 Plasma. Sources. Sci. Technol. 11 484
    [10]
    Hu G Y et al 2007 Phys. Plasmas 14 033103
    [11]
    Back C A et al 2001 Phys. Rev. Lett. 87 275003
    [12]
    Kettle B et al 2015 J. Phys. B: At. Mol. Opt. Phys. 48 224002
    [13]
    Kania D R et al 1992 Phys. Rev. A 46 7853
    [14]
    Young P E et al 2008 Phys. Rev. Lett. 101 035001
    [15]
    García Saiz E et al 2008 Nat. Phys. 4 940
    [16]
    Glenzer S H et al 2003 Phys. Rev. Lett. 90 175002
    [17]
    White S et al 2018 Phys. Rev. E 97 063203
    [18]
    Zhang J T et al 2002 Chin. Phys. Lett. 19 224
    [19]
    Yang Z et al 2010 Plasma Sci. Technol. 12 300
    [20]
    Fiksel Y et al 2012 Rev. Sci. Instrum. 83 086103
    [21]
    Valle Brozas F et al 2018 J. Instrum. 13 12004
    [22]
    Kraft R P et al 1995 Nucl. Instrum. Methods Phys. Res. A 366 192
    [23]
    Fabbro R et al 1982 Phys. Rev. A 26 2289
    [24]
    Larsen J T and Lane S M 1994 J. Quant. Spectrosc. Radiat.Transfer 51 179
    [25]
    Chung H K et al 2005 High Energy Density Phys. 1 3
    [26]
    Hill E G and Rose S J 2011 High Energy Density Phys. 7 377
  • Related Articles

    [1]Yaguang MEI (梅亚光), Shusen CHENG (程树森), Zhongqi HAO (郝中骐), Lianbo GUO (郭连波), Xiangyou LI (李祥友), Xiaoyan ZENG (曾晓雁), Junliang GE (葛军亮). Quantitative analysis of steel and iron by laser-induced breakdown spectroscopy using GA-KELM[J]. Plasma Science and Technology, 2019, 21(3): 34020-034020. DOI: 10.1088/2058-6272/aaf6f3
    [2]Liuyang ZHAN (詹浏洋), Xiaohong MA (马晓红), Weiqi FANG (方玮骐), Rui WANG (王锐), Zesheng LIU (刘泽生), Yang SONG (宋阳), Huafeng ZHAO (赵华凤). A rapid classification method of aluminum alloy based on laser-induced breakdown spectroscopy and random forest algorithm[J]. Plasma Science and Technology, 2019, 21(3): 34018-034018. DOI: 10.1088/2058-6272/aaf7bf
    [3]Dan LUO (罗丹), Ying LIU (刘英), Xiangyu LI (李香宇), Zhenyang ZHAO (赵珍阳), Shigong WANG (王世功), Yong ZHANG (张勇). Quantitative analysis of C, Si, Mn, Ni, Cr and Cu in low-alloy steel under ambient conditions via laser-induced breakdown spectroscopy[J]. Plasma Science and Technology, 2018, 20(7): 75504-075504. DOI: 10.1088/2058-6272/aabc5d
    [4]Fusheng WANG (王富生), Xiangteng MA (马襄腾), Han CHEN (陈汉), Yao ZHANG (张耀). Evolution simulation of lightning discharge based on a magnetohydrodynamics method[J]. Plasma Science and Technology, 2018, 20(7): 75301-075301. DOI: 10.1088/2058-6272/aab841
    [5]Ying LI (李颖), Yanhong GU (谷艳红), Ying ZHANG (张莹), Yuandong LI (李远东), Yuan LU (卢渊). Analytical study of seashell using laser-induced breakdown spectroscopy[J]. Plasma Science and Technology, 2017, 19(2): 25501-025501. DOI: 10.1088/2058-6272/19/2/025501
    [6]HE Li’ao (何力骜), WANG Qianqian (王茜蒨), ZHAO Yu (赵宇), LIU Li (刘莉), PENG Zhong (彭中). Study on Cluster Analysis Used with Laser-Induced Breakdown Spectroscopy[J]. Plasma Science and Technology, 2016, 18(6): 647-653. DOI: 10.1088/1009-0630/18/6/11
    [7]CHANG Zhengshi(常正实), YAO Congwei(姚聪伟), MU Haibao(穆海宝), ZHANG Guanjun(张冠军). Study on the Property Evolution of Atmospheric Pressure Plasma Jets in Helium[J]. Plasma Science and Technology, 2014, 16(1): 83-88. DOI: 10.1088/1009-0630/16/1/18
    [8]GUO Jun (郭俊). The Evolution of Instabilities Driven by a Drift Between Ions and Electrons in Nonmagnetized Plasma[J]. Plasma Science and Technology, 2013, 15(4): 307-312. DOI: 10.1088/1009-0630/15/4/01
    [9]FENG Qichun(冯启春), WANG Qingshang(王清尚), LIU Jianli(刘剑利), REN Yanyu(任延宇), ZHANG Jingbo(张景波), HUO Lei(霍雷). The Evolution of Elliptic Flow under First Order Phase Transition[J]. Plasma Science and Technology, 2012, 14(7): 573-576. DOI: 10.1088/1009-0630/14/7/01
    [10]HU Zuquan, CHEN Yinhua, ZHENG Jugao, LIU Hao, YU Mingyang, WU Jian. Evolution of small scale density perturbations of plasma and charged aerosol particles in Polar Mesospheric Summer Echoes (PMSE) layers[J]. Plasma Science and Technology, 2011, 13(5): 550-556.

Catalog

    Article views (112) PDF downloads (51) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return