Advanced Search+
David BAILIE, Cormac HYLAND, Raj L SINGH, Steven WHITE, Gianluca SARRI, Francis P KEENAN, David RILEY, Steven J ROSE, Edward G HILL, Feilu WANG (王菲鹿), Dawei YUAN (袁大伟), Gang ZHAO (赵刚), Huigang WEI (魏会冈), Bo HAN (韩波), Baoqiang ZHU (朱宝强), Jianqiang ZHU (朱健强), Pengqian YANG (杨朋千). An investigation of the L-shell x-ray conversion efficiency for laser-irradiated tin foils[J]. Plasma Science and Technology, 2020, 22(4): 45201-045201. DOI: 10.1088/2058-6272/ab6188
Citation: David BAILIE, Cormac HYLAND, Raj L SINGH, Steven WHITE, Gianluca SARRI, Francis P KEENAN, David RILEY, Steven J ROSE, Edward G HILL, Feilu WANG (王菲鹿), Dawei YUAN (袁大伟), Gang ZHAO (赵刚), Huigang WEI (魏会冈), Bo HAN (韩波), Baoqiang ZHU (朱宝强), Jianqiang ZHU (朱健强), Pengqian YANG (杨朋千). An investigation of the L-shell x-ray conversion efficiency for laser-irradiated tin foils[J]. Plasma Science and Technology, 2020, 22(4): 45201-045201. DOI: 10.1088/2058-6272/ab6188
  • We have used the Shenguang II laser in third harmonic (351 nm) to investigate the emission of L-shell radiation in the 3.3–4.4 keV range generated using thin foils of Sn coated onto a parylene substrate with irradiation of order 1015 Wcm−2 and nanosecond pulse duration. In our experiment, we have concentrated on assessing the emission on the non-laser irradiated side as this allows an experimental geometry relevant to experiments on photo-ionised plasmas where a secondary target must be placed close to the source, to achieve x-ray fluxes appropriate to astrophysical objects. Overall L-shell conversion efficiencies are estimated to be of order 1%, with little dependence on Sn thickness between 400 and 800 nm.
  • loading

Catalog

    Turn off MathJax
    Article Contents

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return