Advanced Search+
Ruishuang ZHONG (钟蕊霜), Su ZHAO (赵谡), Dengming XIAO (肖登明), Hui WANG (王辉), Xiuchen JIANG (江秀臣), Zhongmin YU (余钟民), Yunkun DENG (邓云坤). Investigation of the performance of CF3I/c-C4F8/N2 and CF3I/c-C4F8/CO2 gas mixtures from electron transport parameters[J]. Plasma Science and Technology, 2020, 22(5): 55402-055402. DOI: 10.1088/2058-6272/ab62e6
Citation: Ruishuang ZHONG (钟蕊霜), Su ZHAO (赵谡), Dengming XIAO (肖登明), Hui WANG (王辉), Xiuchen JIANG (江秀臣), Zhongmin YU (余钟民), Yunkun DENG (邓云坤). Investigation of the performance of CF3I/c-C4F8/N2 and CF3I/c-C4F8/CO2 gas mixtures from electron transport parameters[J]. Plasma Science and Technology, 2020, 22(5): 55402-055402. DOI: 10.1088/2058-6272/ab62e6

Investigation of the performance of CF3I/c-C4F8/N2 and CF3I/c-C4F8/CO2 gas mixtures from electron transport parameters

Funds: This work is supported by National Natural Science Foundation of China (No. 51337006).
More Information
  • Received Date: October 10, 2019
  • Revised Date: December 14, 2019
  • Accepted Date: December 16, 2019
  • CF3I gas mixtures have attracted considerable attention as potential environmentally-friendly alternatives to SF6 gas, owing to their excellent insulating performance. This paper attempts to study the CF3I ternary gas mixtures with c-C4F8 and buffer gases N2 and CO2 by considering dielectric strength from electron transport parameters based on the Boltzmann method and synergistic effect analysis, compared with SF6 gas mixtures. The results confirm that the critical electric field strength of CF3I/c-C4F8/70 % CO2 is greater than that of 30% SF6/70% CO2 when the CF3I content is greater than 17%. Moreover, a higher content of c-C4F8 decreases the sensitivity of gas mixtures to an electric field, and this phenomenon is more obvious in CF3I/c-C4F8/CO2 gas mixtures. The synergistic effects for CF3I/c-C4F8/70 % N2 were most obvious when the c-C4F8 content was approximately 20%, and for CF3I/c-C4F8/70 % CO2 when the c-C4F8 content was approximately 10%. On the basis of this research, CF3I/c-C4F8/70 % N2 shows better insulation performance when the c-C4F8 content is in the 15%–20% range. For CF3I/c-C4F8/70 % CO2, when the c-C4F8 content is in the 10%–15% range, the gas mixtures have excellent performance. Hence, these gas systems might be used as alternative gas mixtures to SF6 in high-voltage equipment.
  • [1]
    Deng Y K and Xiao D M 2013 Chin. Phys. B 22 035101
    [2]
    Li X W et al 2013 J. Phys. D: Appl. Phys. 46 345203
    [3]
    Jiao J T et al 2016 Plasma Sci. Technol. 18 554
    [4]
    Yokomizu Y, Ochiai R and Matsumura T 2009 J. Phys. D:Appl. Phys. 42 215204
    [5]
    Katagiri H et al 2008 IEEE Trans. Dielectr. Electr. Insul.15 1424
    [6]
    Liu X L et al 2008 J. Phys. D: Appl. Phys. 41 015206
    [7]
    Deng Y K, Xiao D M et al 2012 Eur. Phys. J. Appl. Phys. 57 20801
    [8]
    Yamamoto O et al 1995 IEEE Trans. Dielectr. Electr. Insul.2 292
    [9]
    Zhong R S et al 2018 IEEE Trans. Dielectr. Electr. Insul.25 1371
    [10]
    De Urquijo J et al 2007 J. Phys. D: Appl. Phys. 40 2205
    [11]
    Zhao S et al 2018 Plasma Sci. Technol. 20 065401
    [12]
    Wu B T et al 2006 J. Phys. D: Appl. Phys. 39 4204
    [13]
    Man L K, Deng Y K and Xiao D M 2017 High Voltage Eng.43 788 (in Chinese)
    [14]
    Xu L L et al 2017 High Voltage Eng. 43 721 (in Chinese)
    [15]
    Cheng Y et al 2017 High Voltage Eng. 43 795 (in Chinese)
    [16]
    Hagelaar G J M and Pitchford L C 2005 Plasma Sources Sci.Technol. 14 722
    [17]
    Liu J F and Govinda Raju G R 1992 Can. J. Phys. 70 216
    [18]
    Allis W P 1982 Phys. Rev. A 26 1704
    [19]
    Hernández-Ávila J L, Basurto E and de Urquijo J 2002 J. Phys.D: Appl. Phys. 35 2264
    [20]
    Tagashira H, Sakai Y and Sakamoto S 1977 J. Phys. D: Appl.Phys. 10 1051
    [21]
    www.lxcat.net
    [22]
    Christophorou L G and Olthoff J K 2001 J. Phys. Chem. Ref.Data 30 449
    [23]
    Kimura M and Nakamura Y 2010 J. Phys. D: Appl. Phys. 43 145202
    [24]
    Hasegawa H et al 2009 Appl. Phys. Lett. 95 101504
    [25]
    Liu X L and Xiao D M 2007 Eur. Phys. J. Appl. Phys. 38 269
    [26]
    Yamaji M, Nakamura Y and Morokuma Y 2004 J. Phys. D:Appl. Phys. 37 432
    [27]
    De Urquijo J and Basurto E 2001 J. Phys. D: Appl. Phys.34 1352
  • Related Articles

    [1]Wenting WENG, Donghui XIA, Yizhe TIAN, Xixuan CHEN, Zhijiang WANG, Yuan PAN. Investigation on the multi-hole directional coupler for power measurement of the J-TEXT ECRH system[J]. Plasma Science and Technology, 2022, 24(6): 065602. DOI: 10.1088/2058-6272/ac5d7b
    [2]Donghui XIA (夏冬辉), Fangtai CUI (崔芳泰), Changhai LIU (刘昌海), Zhenxiong YU (余振雄), Yikun JIN (金易坤), Zhijiang WANG (王之江), J-TEXT team. The anode power supply for the ECRH system on the J-TEXT tokamak[J]. Plasma Science and Technology, 2018, 20(1): 14018-014018. DOI: 10.1088/2058-6272/aa936d
    [3]Xiaodan ZHANG (张小丹), Xiaoying WANG (王晓英), Chundong HU (胡纯栋), Caichao JIANG (蒋才超), Yahong XIE (谢亚红), Yuanzhe ZHAO (赵远哲). The development of data acquisition and processing application system for RF ion source[J]. Plasma Science and Technology, 2017, 19(7): 75602-075602. DOI: 10.1088/2058-6272/aa61f5
    [4]XU Handong (徐旵东), WANG Xiaojie (王晓洁), LIU Fukun (刘甫坤), ZHANG Jian (张健), HUANG Yiyun (黄懿赟), SHAN Jiafang (单家方), WU Dajun (吴大俊), HU Huaichuan (胡怀传), LI Bo (李波), LI Miaohui (李妙辉), YANG Yong (杨永), FENG Jianqiang (冯建强), XU Weiye (徐伟业), TANG Yunying (汤允迎), WEI Wei (韦维), XU Liqing (徐立清), LIU Yong (刘永), ZHAO Hailin (赵海林), J. LOHR, Y. A. GORELOV, J. P. ANDERSON, MA Wendong (马文东), WU Zege (吴则革), WANG Jian (王健), ZHANG Liyuan (张立元), GUO Fei(郭斐), SUN Haozhang (孙浩章), YAN Xinsheng (闫新胜), EAST Team. Development and Preliminary Commissioning Results of a Long Pulse 140 GHz ECRH System on EAST Tokamak (Invited)[J]. Plasma Science and Technology, 2016, 18(4): 442-448. DOI: 10.1088/1009-0630/18/4/19
    [5]WANG Lei(王磊), HUANG Yiyun(黄懿赟), ZHAO Yanping(赵燕平), ZHANG Jian(张健), YANG Lei(杨磊), GUO Wenjun(郭文军). Structure Design and Analysis of High-Voltage Power Supply for ECRH[J]. Plasma Science and Technology, 2014, 16(11): 1079-1082. DOI: 10.1088/1009-0630/16/11/15
    [6]MA Wendong(马文东), SHAN Jiafang(单家方), XU Handong(徐旵东), HU Huaichuan(胡怀传), WANG Mao(王茂), WU Zege(吴则格). Power Control and Data Acquisition System for High Power Microwave Test Bench[J]. Plasma Science and Technology, 2014, 16(4): 415-419. DOI: 10.1088/1009-0630/16/4/21
    [7]ZHANG Xiaodan (张小丹), HU Chundong (胡纯栋), SHENG Peng (盛鹏), LIU Zhimin (刘智民), et al.. Development of a Data Acquisition Control System for the First NBI on EAST[J]. Plasma Science and Technology, 2013, 15(12): 1247-1253. DOI: 10.1088/1009-0630/15/12/17
    [8]HUANG Mei (黄梅), CHEN Gangyu (陈罡宇), ZHOU Jun (周俊), WANG Chao (王超), et al.. Development of a 140 GHz Steerable Launcher for the HL-2A ECRH System[J]. Plasma Science and Technology, 2013, 15(12): 1247-1253. DOI: 10.1088/1009-0630/15/12/16
    [9]WANG Chao (王超), ZHOU Jun (周俊), HUANG Mei (黄梅), WANG He (王贺), CHEN Gangyu (陈罡宇), RAO Jun (饶军). ECRH Launcher for Four-Beam Injection on HL-2A Tokamak[J]. Plasma Science and Technology, 2013, 15(5): 476-479. DOI: 10.1088/1009-0630/15/5/16
    [10]A. C. ENGLAND, Z. Y. CHEN, D. C. SEO, J. CHUNG, Y. S. LEEV, J. W. YOO, W. C. KIM, Y. S. BAE, Y. M. JEONV, J. G. KWAK, M. KWON, the KSTAR Tea. Runaway Electron Suppression by ECRH and RMP in KSTAR[J]. Plasma Science and Technology, 2013, 15(2): 119-122. DOI: 10.1088/1009-0630/15/2/08

Catalog

    Article views (116) PDF downloads (126) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return