Advanced Search+
Nannan YANG (杨楠楠), Guofu LI (李国富), Yongli ZHAO (赵永利), Jialiang ZHANG (张家良), Xiaoqiong WEN (温小琼). Investigation on pulsed discharge mode in SF6-C2H6 mixtures[J]. Plasma Science and Technology, 2020, 22(3): 34015-034015. DOI: 10.1088/2058-6272/ab675f
Citation: Nannan YANG (杨楠楠), Guofu LI (李国富), Yongli ZHAO (赵永利), Jialiang ZHANG (张家良), Xiaoqiong WEN (温小琼). Investigation on pulsed discharge mode in SF6-C2H6 mixtures[J]. Plasma Science and Technology, 2020, 22(3): 34015-034015. DOI: 10.1088/2058-6272/ab675f

Investigation on pulsed discharge mode in SF6-C2H6 mixtures

Funds: This work is supported by National Natural Science Foundation of China (No. 11375041).
More Information
  • Received Date: September 04, 2019
  • Revised Date: January 02, 2020
  • Accepted Date: January 02, 2020
  • The non-chain chemical HF(DF) laser is one of the most powerful electrically-driven lasers operating in mid-infrared, in which SF6-C2H6 mixtures are often used as lasering media. Due to the electronegativity of SF6, the discharge in SF6-C2H6 presents a complicated discharge mode. To achieve reproducible pulsed laser output, pulsed discharge in SF6-C2H6 mixtures is investigated for discharge mode using plane electrodes assisted by array pre-ionization spark pins in cathode surface. Firstly, two modes can be distinguished. One mode is called the selfsustained volume discharge (SSVD), which is characterized by spatial uniformity in the discharge gap and pulse to pulse repeatability. On the contrary, another mode includes random arc passages in the discharge gap and therefore cannot conduct lasering. By varying discharge conditions (gap voltage, gas pressure, etc) two discharge modes are observed. Secondly, the holding scope of the SSVD mode is analyzed for the optimal mixture ratio of 20:1, and the boundary tend of the holding scope of SSVD indicates there exists maximum gas pressure and maximum charging voltage for SSVD. Finally, the peak current of SSVD relates positively to charging voltage, while negatively to gas pressure, from which it is drawn that synchronous electron avalanches initiated by the sliding array overlap spatially into SSVD and thus SSVD is essentially an α ionization avalanche.
  • [1]
    Karnyushin V N et al 1978 Sov. J. Quantum Electron. 8 319
    [2]
    Levatter J I and Lin S C 1980 J. Appl. Phys. 51 210
    [3]
    Mesyats G A and Korolev Y D 1986 Sov. Phys. Usp. 29 57
    [4]
    Yi A P et al 2016 Modern Appl. Phys. 7 020301 (in Chinese)
    [5]
    Bychkov Y et al 2002 Single hot spot discharge in SF6 gas and in the mixture SF6/C2H6 Proc. SPIE 4747
    [6]
    Richeboeuf L 1999 Appl. Phys. B 68 45
    [7]
    Lacour B et al 2001 Appl. Phys. B 72 289
    [8]
    Yi A P et al 2017 Infrared Laser Eng. 46 0605005 (in Chinese)
    [9]
    Belevtsev A A et al 2003 UV-preionization in non-chain HF lasers with a self-sustained volume discharge to initiate chemical reaction.- Is it actually essential? Proc. SPIE 2120
    [10]
    Osipov V V 2000 Physics-Uspekhi 43 221
    [11]
    Belevtsev A A et al 2018 J. Phys. D: Appl. Phys. 51 384003
    [12]
    Belevtsev A A et al 2011 Chin. J. Opt. 4 31
    [13]
    Belevtsev A A et al 2011 J. Phys. D: Appl. Phys. 44 505202
    [14]
    Belevtsev A A et al 2011 Quantum Electron. 41 703
    [15]
    Belevtsev A A et al 2010 Quantum Electron. 40 484
    [16]
    Apollonov V V et al 2002 Quantum Electron. 32 95
    [17]
    Apollonov V V et al 2000 Quantum Electron. 30 207
    [18]
    Apollonov V V and Kazantsev S Y 2019 Tech. Phys. Lett.45 443
    [19]
    Apollonov V V 2016 Laser Phys. 26 084006
    [20]
    Panchenko A N, Orlovskii V M and Tarasenko V F 2004 Nonchain HF and DF lasers pumped by electric discharge Proc.SPIE 5777
    [21]
    Tarasenko V F, Orlovskii V M and Panchenko A N 2001 Quantum Electron. 31 1035
    [22]
    Panchenko A N and Tarasenko V F 2004 Russ. Phys. J. 47 571
    [23]
    Ke C J, Wan C Y and Wu J 2003 Chin. J. Lasers 30 1 (in Chinese)
    [24]
    Qiu Y and Xiao D M 1994 J. Phys. D: Appl. Phys. 27 2663
  • Related Articles

    [1]Ziming ZHANG, Chuan FANG, Yaoting WANG, Lanyue LUO, Heping LI. Analyses of nonequilibrium transport in atmospheric-pressure direct-current argon discharge under different modes[J]. Plasma Science and Technology, 2024, 26(11): 115402. DOI: 10.1088/2058-6272/ad6705
    [2]Hongyue LI (李红月), Xingwei WU (吴兴伟), Cong LI (李聪), Yong WANG (王勇), Ding WU (吴鼎), Jiamin LIU (刘佳敏), Chunlei FENG (冯春雷), Hongbin DING (丁洪斌). Study of spatial and temporal evolution of Ar and F atoms in SF6/Ar microsecond pulsed discharge by optical emission spectroscopy[J]. Plasma Science and Technology, 2019, 21(7): 74008-074008. DOI: 10.1088/2058-6272/ab0c46
    [3]Siyuan DONG (董思远), Shaomeng GUO (郭少孟), Dan WEN (文旦), Xiaoliang TANG (唐晓亮), Gao QIU (邱高). Investigation on the mode of AC discharge in H2O affected by temperature[J]. Plasma Science and Technology, 2018, 20(4): 45401-045401. DOI: 10.1088/2058-6272/aaa70b
    [4]ZHANG Renxi (张仁熙), WANG Jingting (王婧婷), CAO Xu (曹栩), HOU Huiqi (侯惠奇). Decomposition of Potent Greenhouse Gases SF6, CF4 and SF5CF3 by Dielectric Barrier Discharge[J]. Plasma Science and Technology, 2016, 18(4): 388-393. DOI: 10.1088/1009-0630/18/4/10
    [5]WEI Linsheng(魏林生), XU Min(徐敏), YUAN Dingkun(袁定琨), ZHANG Yafang(章亚芳), HU Zhaoji(胡兆吉), TAN Zhihong(谭志洪). Electron Transport Coefficients and Effective Ionization Coefficients in SF 6 -O 2 and SF 6 -Air Mixtures Using Boltzmann Analysis[J]. Plasma Science and Technology, 2014, 16(10): 941-947. DOI: 10.1088/1009-0630/16/10/07
    [6]ZHENG Dianchun(郑殿春), WANG Jia(王佳), CHEN Chuntian(陈春天), ZHAO Dawei(赵大伟), ZHANG Chunxi(张春喜), YANG Jiaxiang(杨嘉祥). Dynamic Characteristics of SF 6 -N 2 -CO 2 Gas Mixtures in DC Discharge Process[J]. Plasma Science and Technology, 2014, 16(9): 848-855. DOI: 10.1088/1009-0630/16/9/08
    [7]RAN Huijuan(冉慧娟), WANG Lei(王磊), WANG Jue(王珏), WANG Tao(王涛), YAN Ping(严萍). Discharge Characteristics of SF6 in a Non-Uniform Electric Field Under Repetitive Nanosecond Pulses[J]. Plasma Science and Technology, 2014, 16(5): 465-470. DOI: 10.1088/1009-0630/16/5/05
    [8]HE Feng (何锋), HE Shoujie (何寿杰), ZHAO Xiaofei (赵晓菲), GUO Bingang (郭滨刚), OUYANG Jiting (欧阳吉庭). Study of the Discharge Mode in Micro-Hollow Cathode[J]. Plasma Science and Technology, 2012, 14(12): 1079-1083. DOI: 10.1088/1009-0630/14/12/08
    [9]CHANG Jiasen, WANG Hu, ZHANG Qiaogen, QIU Aici. Multichannel Discharge Characteristics of Gas Switch Gap in SF6-N2 or SF6-Ar Gas Mixtures under Nanosecond Triggering Pulses[J]. Plasma Science and Technology, 2011, 13(6): 719-723.
    [10]SHAO Xianjun, ZHANG Guanjun, KAWADA Masatake, MA Yue, LI Yaxi. Simulational study on multi-pulse phenomena of atmospheric pressure argon dielectric barrier discharge[J]. Plasma Science and Technology, 2011, 13(6): 708-713.
  • Cited by

    Periodical cited type(2)

    1. Zhang, L., Ruan, P., Chen, F. et al. Investigation of the Beam Quality of a Compact Non-Chain Pulsed DF Laser with a Confocal Positive Branch Unstable Resonator. Applied Sciences (Switzerland), 2023, 13(5): 3229. DOI:10.3390/app13053229
    2. Tang, J., Tang, B., Li, Y. et al. Research and Consideration on the Decomposition and Recovery Performance of Eco-friendly Gas Insulating Medium C5F10O | [环保绝缘气体C5F10O分解及复原性能研究现状及展望]. Zhongguo Dianji Gongcheng Xuebao/Proceedings of the Chinese Society of Electrical Engineering, 2022, 42(3): 1210-1222. DOI:10.13334/j.0258-8013.pcsee.211884

    Other cited types(0)

Catalog

    Article views (135) PDF downloads (95) Cited by(2)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return