Advanced Search+
Zitong ZHAO (赵子彤), Xiangyou WANG (王相友), Tingjun MA (马挺军), Yunjin SUN (孙运金). Optimization of plasma-processed air (PPA) inactivation of Escherichia coli in button mushrooms for extending the shelf life by response surface methodology[J]. Plasma Science and Technology, 2020, 22(6): 65501-065501. DOI: 10.1088/2058-6272/ab6d26
Citation: Zitong ZHAO (赵子彤), Xiangyou WANG (王相友), Tingjun MA (马挺军), Yunjin SUN (孙运金). Optimization of plasma-processed air (PPA) inactivation of Escherichia coli in button mushrooms for extending the shelf life by response surface methodology[J]. Plasma Science and Technology, 2020, 22(6): 65501-065501. DOI: 10.1088/2058-6272/ab6d26

Optimization of plasma-processed air (PPA) inactivation of Escherichia coli in button mushrooms for extending the shelf life by response surface methodology

Funds: This work was supported by National Natural Science Foundation of China (No. 31972144). This work was also supported by Beijing University of Agriculture (BAU).
More Information
  • Received Date: November 27, 2019
  • Revised Date: January 14, 2020
  • Accepted Date: January 16, 2020
  • The effect of plasma-processed air (PPA) treatment with different conditions (time, power and flow rate) on the inactivation of Escherichia coli (E. coli) in button mushroom was evaluated. Response surface methodology (RSM) was applied to optimize PPA treatments on the E. coli of button mushrooms. According to the response surface analysis, the optimal treatment parameters were a treatment time of 12 min, treatment power of 90W and flow rate of 1.2 l min−1. As with verifying tests from the optimization exercise, the number of E. coli reduced by 5.27 log CFU/g at the determined optimum conditions. The scanning electronic microscopy (SEM) micrography showed that the surface of the E. coli was significantly changed under the optimized PPA treatment. Quality parameters of button mushrooms treated at the determined optimum conditions were compared with untreated samples during the storage for 12 d at 4 °C±1 °C. The PPA treatment was found to be effective in inhibiting microbes and preserving postharvest quality in button mushrooms, and these results suggested PPA treatment may provide an alternative for the sterilization of foodborne and maintaining postharvest of fruits and vegetables.
  • [1]
    Ohri-Vachaspati P et al 2018 J. Acad. Nutr. Diet. 118 1408
    [2]
    Alocilja E C and Radke S M 2003 Biosens.Bioelectron. 18 841
    [3]
    Abadias M et al 2008 Int. J. Food Microbiol. 123 121
    [4]
    Zhang H et al 2017 Trends Food Sci. Technol. 69 36
    [5]
    Pandey A et al 2017 Biosens. Bioelectron. 91 225
    [6]
    Sperber W H et al 2007 J. Food Prot. 70 1041
    [7]
    Mukherjee A et al 2006 J. Food Prot. 69 1928
    [8]
    Lima G et al 2011 Postharvest Biol. Technol. 60 164
    [9]
    O Donnell C P et al 2008 Trends Food Sci. Technol. 21 358
    [10]
    Usall J et al 2016 Postharvest Biol. Technol 122 30
    [11]
    Vinale F et al 2008 Physiol. Mol. Plant Pathol 72 80
    [12]
    Bell K Y et al 1997 Food Microbiol. 14 439
    [13]
    Hao J et al 2012 Int. J. Food Microbiol. 155 104
    [14]
    Bermúdez-Aguirre D et al 2012 Food Control. 34 149
    [15]
    Ross A I V et al 2003 Int. J. Food Microbiol. 89 125
    [16]
    Rowan N J et al 2019 Trends Food Sci. 88 316
    [17]
    Baier M, Görgen M et al 2014 Innov. Food Sci. Emerg.Technol. 22 147
    [18]
    Lacombe A et al 2015 Food Microbiol. 46 479
    [19]
    Misra N N et al 2014 J. Biosci. Bioeng. 118 117
    [20]
    Ziuzina D et al 2014 Food Microbiol. 42 109
    [21]
    Ruonan Ma et al 2015 J. Hazard. Mater. 300 643
    [22]
    Jie Shen et al 2019 Chem. Eng. J. 362 402
    [23]
    Jie Shen et al 2015 Plasma Process. Polym. 12 252
    [24]
    Zelong Zhang et al 2017 Plasma Chem. Plasma Process. 37 415
    [25]
    Baier M et al 2015 Postharvest Biol. Technol. 100 120
    [26]
    Bußler S, Ehlbeck J and Schlüter O K 2017 Food Sci. Emerg.Technol. 40 78
    [27]
    Guan W, Fan X and Yan R 2012 Postharvest Biol. Technol.64 119
    [28]
    Guan W, Fan X and Yan R 2013 Food Control. 34 554
    [29]
    Xu F et al 2019 Food Control. 105 8
    [30]
    Ziuzina D et al 2015 Int. J. Food Microbiol. 210 53
    [31]
    Zhang L et al 2019 Postharvest Biol. Technol. 155 47
    [32]
    Li L et al 2017 Food Sci. Technol. Int. 23 385
    [33]
    van Bokhorst-van De Veen H et al 2015 Food Microbiology.45 26
    [34]
    Huang C et al 2007 Plasma Process. Polym. 4 77
    [35]
    Mok C et al 2015 Food Res. Int. 69 418
    [36]
    Liao X et al 2017 Food Control. 75 83
    [37]
    Feng H et al 2009 IEEE Trans. Plasma Sci. 37 121
    [38]
    Xu Y et al 2016 Food Chem. 197 436
    [39]
    Tappi S et al 2014 Innov. Food Sci. Emerg. Technol. 21 114
    [40]
    Jing L et al 2018 Postharvest Biol. Technol. 139 99
  • Related Articles

    [1]Rahul NAVIK, Sameera SHAFI, Md Miskatul ALAM, Md Amjad FAROOQ, Lina LIN (林丽娜), Yingjie CAI (蔡映杰). Influence of dielectric barrier discharge treatment on mechanical and dyeing properties of wool[J]. Plasma Science and Technology, 2018, 20(6): 65504-065504. DOI: 10.1088/2058-6272/aaaadd
    [2]Bin HAN (韩滨), D NEENA, Zesong WANG (王泽松), K K KONDAMAREDDY, Na LI (李娜), Wenbin ZUO (左文彬), Shaojian YAN (闫少健), Chuansheng LIU (刘传胜), Dejun FU (付德君). Investigation of structure and mechanical properties of plasma vapor deposited nanocomposite TiBN films[J]. Plasma Science and Technology, 2017, 19(4): 45503-045503. DOI: 10.1088/2058-6272/aa57eb
    [3]WANG Chunlin (王春林), WU Yi (吴翊), CHEN Zhexin (陈喆歆), YANG Fei (杨飞), FENG Ying (冯英), RONG Mingzhe (荣命哲), ZHANG Hantian (张含天). Thermodynamic and Transport Properties of Real Air Plasma in Wide Range of Temperature and Pressure[J]. Plasma Science and Technology, 2016, 18(7): 732-739. DOI: 10.1088/1009-0630/18/7/06
    [4]ZHOU Xue (周学), CUI Xinglei (崔行磊), CHEN Mo (陈默), ZHAI Guofu (翟国富). Thermodynamic Properties and Transport Coefficients of Nitrogen, Hydrogen and Helium Plasma Mixed with Silver Vapor[J]. Plasma Science and Technology, 2016, 18(5): 560-568. DOI: 10.1088/1009-0630/18/5/20
    [5]CHEN Hongyun (陈虹运), GOU Li (芶立). Mechanical Properties and Uniformity of Nanocrystalline Diamond Coating Deposited Around a Sphere by MPCVD[J]. Plasma Science and Technology, 2015, 17(12): 1038-1042. DOI: 10.1088/1009-0630/17/12/10
    [6]LI Xibao(李喜宝), LU Jinshan(卢金山), LUO Junming(罗军明), ZHANG Jianjun(张建军), OU Junfei(欧军飞), XU Haitao(徐海涛). Mechanical Properties of Thermoplastic Polyurethanes Laminated Glass Treated by Acid Etching Combined with Cold Plasma[J]. Plasma Science and Technology, 2014, 16(10): 964-968. DOI: 10.1088/1009-0630/16/10/11
    [7]Vahid ABBASI, Ahmad GHOLAMI, Kaveh NIAYESH. The Effects of SF6-Cu Mixture on the Arc Characteristics in a Medium Voltage Puffer Gas Circuit Breaker due to Variation of Thermodynamic Properties and Transport Coefficients[J]. Plasma Science and Technology, 2013, 15(6): 586-592. DOI: 10.1088/1009-0630/15/6/18
    [8]Aamir Shahzad, HE Maogang. Thermodynamic Characteristics of Dusty Plasma studied by using Molecular Dynamics Simulation[J]. Plasma Science and Technology, 2012, 14(9): 771-777. DOI: 10.1088/1009-0630/14/9/01
    [9]SHU Song(舒崧), LI Jiarong (李家荣). A Mean-Field Treatment in Studying Nuclear Matter Through a Thermodynamic Consistent Resummation Scheme[J]. Plasma Science and Technology, 2012, 14(5): 379-382. DOI: 10.1088/1009-0630/14/5/07
    [10]LIU Gu, WANG Liuying, CHEN Guiming, HUA Shaochun, ZHU Erlei. Effect of Spraying Parameters on the Microstructure and Mechanical Properties of Micro-Plasma Sprayed Alumina-Titania Coatings[J]. Plasma Science and Technology, 2011, 13(4): 474-479.
  • Cited by

    Periodical cited type(12)

    1. Kim, E.-J., Thiruthummal, A.A. Probabilistic theory of the L-H transition and causality. Plasma Physics and Controlled Fusion, 2025, 67(2): 025025. DOI:10.1088/1361-6587/adab1c
    2. Xu, J., Luan, Q., Li, H. et al. Neural network based fast prediction of double tearing modes in advanced tokamak plasmas. Physics of Plasmas, 2024, 31(12): 122113. DOI:10.1063/5.0229910
    3. Wang, H., Jiang, S., Liu, T. et al. Effects of diamagnetic drift on nonlinear interaction between multi-helicity neoclassical tearing modes. Chinese Physics B, 2024, 33(6): 065202. DOI:10.1088/1674-1056/ad24d3
    4. Tang, W., Luan, Q., Sun, H. et al. Screening effect of plasma flow on the resonant magnetic perturbation penetration in tokamaks based on two-fluid model. Plasma Science and Technology, 2023, 25(4): 045103. DOI:10.1088/2058-6272/aca372
    5. Liu, T., Li, H., Tang, W. et al. Intelligent control for predicting and mitigating major disruptions in magnetic confinement fusion. iEnergy, 2022, 1(2): 153-157. DOI:10.23919/IEN.2022.0022
    6. Jiang, S., Tang, W., Wei, L. et al. Effects of plasma radiation on the nonlinear evolution of neo-classical tearing modes in tokamak plasmas. Plasma Science and Technology, 2022, 24(5): 055101. DOI:10.1088/2058-6272/ac500b
    7. Wang, Z., Tang, W., Wei, L. A brief review: Effects of resonant magnetic perturbation on classical and neoclassical tearing modes in tokamaks. Plasma Science and Technology, 2022, 24(3): 033001. DOI:10.1088/2058-6272/ac4692
    8. Lu, S.S., Ma, Z.W., Tang, W. et al. Numerical study on nonlinear double tearing mode in ITER. Nuclear Fusion, 2021, 61(12): 126065. DOI:10.1088/1741-4326/ac3022
    9. Lu, S.-S., Liu, Y., Wei, L. Numerical simulation of neoclassical tearing modes induced by resonant magnetic perturbations in tokamak plasmas. Vacuum, 2020. DOI:10.1016/j.vacuum.2020.109656
    10. Lu, S.S., Ma, Z.W., Zhang, H.W. et al. Locking effects of error fields on a tearing mode in tokamak. Plasma Physics and Controlled Fusion, 2020, 62(12): 125005. DOI:10.1088/1361-6587/abbcc4
    11. Nelson, A.O., Logan, N.C., Choi, W. et al. Experimental evidence of electron-cyclotron current drive-based neoclassical tearing mode suppression threshold reduction during mode locking on DIII-D. Plasma Physics and Controlled Fusion, 2020, 62(9): 094002. DOI:10.1088/1361-6587/ab9b3b
    12. Tang, W., Wang, Z.-X., Wei, L. et al. Control of neoclassical tearing mode by synergetic effects of resonant magnetic perturbation and electron cyclotron current drive in reversed magnetic shear tokamak plasmas. Nuclear Fusion, 2020, 60(2): 026015. DOI:10.1088/1741-4326/ab61d5

    Other cited types(0)

Catalog

    Article views (167) PDF downloads (104) Cited by(12)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return