Advanced Search+
Yunzhen ZHU (朱芸桢), Jinzhou XU (徐金洲), Jiaqi CHU (褚佳琪). The double coupled microwave resonance probes and application for diagnosing atmospheric pressure plasma jet[J]. Plasma Science and Technology, 2020, 22(6): 65401-065401. DOI: 10.1088/2058-6272/ab74f3
Citation: Yunzhen ZHU (朱芸桢), Jinzhou XU (徐金洲), Jiaqi CHU (褚佳琪). The double coupled microwave resonance probes and application for diagnosing atmospheric pressure plasma jet[J]. Plasma Science and Technology, 2020, 22(6): 65401-065401. DOI: 10.1088/2058-6272/ab74f3

The double coupled microwave resonance probes and application for diagnosing atmospheric pressure plasma jet

Funds: This work was supported by National Natural Science Foundation of China (No. 11075033).
More Information
  • Received Date: September 24, 2019
  • Revised Date: January 22, 2020
  • Accepted Date: February 10, 2020
  • The double-coupled microwave resonance probe (DMRP) based on the hairpin probe is proposed for diagnosing atmospheric plasma jet (ne < 1017 m-3 ). In this work, the resonance characteristics of DMRP are investigated by numerical simulation. It shows that two resonance peaks on the reflectance spectrum can be observed, and influenced significantly by some parameters, such as the probe separation, the distance to the handheld radio frequency atmospheric pressure glow discharge plasma jet (RF-APGDPJ) and the plasma electron density less than 1017 m−3. Based on two resonance modes of DMRP, the electron densities in the afterglow of RF-APGDPJ at the different rf powers and helium flow rates are diagnosed experimentally by matching the change of FWHM (Δf1 -Δf1,air and Δf2 -Δf2,air) measured by vector network analyzer with the simulated relation between the FWHM changes and the plasma density.
  • [1]
    Park G Y et al 2010 Plasma Process. Polym. 7 281
    [2]
    Urabe K et al 2008 Appl. Phys. Express 1 066004
    [3]
    Tajima S et al 2010 J. Appl. Phys. 108 083302
    [4]
    Walsh J L, Shi J J and Kong M G 2006 Appl. Phys. Lett. 88 171501
    [5]
    Kędzierski J et al 2005 Solid State Phenom. 107 119
    [6]
    Sladek R E J et al 2004 IEEE Trans. Plasma Sci. 32 1540
    [7]
    Laroussi M and Lu X 2005 Appl. Phys. Lett. 87 113902
    [8]
    Nozaki T et al 2007 Nanotechnology 18 235603
    [9]
    Ichiki T, Taura R and Horiike Y J 2004 J. Appl. Phys. 95 35
    [10]
    Benedikt J et al 2006 Appl. Phys. Lett. 89 251504
    [11]
    Moravej M et al 2004 J. Appl. Phys. 96 7011
    [12]
    Hicks R F et al 2006 SAMPE Fall Technical Conf. Proc.:Global Advances in Materials and Process Engineering (Dallas, Texas, United States)
    [13]
    Moravej M et al 2004 Plasma Sources Sci. Technol. 13 8
    [14]
    Stenzel R L 1976 Rev. Sci. Instrum 47 603
    [15]
    Piejak P B et al 2004 J. Appl. Phys. 95 3785
    [16]
    Haas F A, Al-Kuzee J and Braithwaite N S J 2005 Appl. Phys.Lett. 87 201503
    [17]
    Sands B L, Siefert N S and Ganguly B N 2007 Plasma Sources Sci. Technol. 16 716
    [18]
    Šamara V, Bowden M D and Braithwaite N S J 2012 Plasma Sources Sci. Technol. 21 024011
    [19]
    Sirse N, Karkari S K and Turner M M 2015 Plasma Sources Sci. Technol. 24 022001
    [20]
    Milosavljevic V, Karkari S K and Ellingboe A R 2007 Plasma Sources Sci. Technol. 16 304
    [21]
    Karkari S K et al 2007 J. Appl. Phys. 102 063308
    [22]
    Xu J Z et al 2009 Plasma Sources Sci. Technol. 18 045009
    [23]
    Xu J Z et al 2010 Chin. Phys. B 19 075206
    [24]
    Yan W 2015 Master Donghua Univisity O461.21; O358 (in Chinese)
    [25]
    Zhao B Y et al 2018 J. Donghua Univ. (Nat. Sci.) 44 141 (in Chinese)
    [26]
    COMSOL AB 2012 COMSOL multiphysics user’s guide (version 4.3) Stockholm, Sweden
    [27]
    Bliokh K Y et al 2008 Rev. Mod. Phys. 80 1201
    [28]
    Bliokh K Y et al 2008 Phys. Rev. Lett. 101 133901
    [29]
    Xiong Q et al 2013 Plasma Sources Sci. Technol. 22 015011
    [30]
    Yan W, Xu J Z and Wang J F 2015 Testing and Measurement:Techniques and Applications (Boca Raton, FL: CRC Press)
    [31]
    Yousfi M et al 2012 Plasma Sources Sci. Technol. 21 045003
    [32]
    Tachibana K, Kishimoto Y and Sakai O 2005 J. Appl. Phys. 97 123301
    [33]
    Niemi K et al 2011 Plasma Sources Sci. Technol. 20 055005
  • Related Articles

    [1]Zhongtian WANG (王中天), Huidong LI (李会东), Xueke WU (吴雪科). Loss-cone instabilities for compact fusion reactor and field-reversed configuration[J]. Plasma Science and Technology, 2019, 21(2): 25101-025101. DOI: 10.1088/2058-6272/aaead9
    [2]Haiying WEI (魏海英), Hongge GUO (郭红革), Meili ZHOU (周美丽), Lei YUE (岳蕾), Qiang CHEN (陈强). DBD plasma assisted atomic layer deposition alumina barrier layer on self-degradation polylactic acid film surface[J]. Plasma Science and Technology, 2019, 21(1): 15503-015503. DOI: 10.1088/2058-6272/aae0ee
    [3]A BOUCHIKHI. Modeling of a DC glow discharge in a neon– xenon gas mixture at low pressure and with metastable atom densities[J]. Plasma Science and Technology, 2017, 19(9): 95403-095403. DOI: 10.1088/2058-6272/aa74ad
    [4]HU Chundong (胡纯栋), CHEN Yu (陈宇), XU Yongjian (许永建), YU Ling (于玲), LI Xiang (栗翔), ZHANG Weitang (张为堂), NBI Group. Analysis of the Pipe Heat Loss of the Water Flow Calorimetry System in EAST Neutral Beam Injector[J]. Plasma Science and Technology, 2016, 18(11): 1139-1142. DOI: 10.1088/1009-0630/18/11/13
    [5]WANG Jingting (王婧婷), CAO Xu (曹栩), ZHANG Renxi (张仁熙), GONG Ting (龚挺), HOU Huiqi (侯惠奇), CHEN Shanping (陈善平), ZHANG Ruina (张瑞娜). Effect of Water Vapor on Toluene Removal in Catalysis-DBD Plasma Reactors[J]. Plasma Science and Technology, 2016, 18(4): 370-375. DOI: 10.1088/1009-0630/18/4/07
    [6]F. MARCHAL, M. YOUSFI, N. MERBAHI, G. WATTIEAUX, A. PIQUEMAL. Quantitative Determination of Density of Ground State Atomic Oxygen from Both TALIF and Emission Spectroscopy in Hot Air Plasma Generated by Microwave Resonant Cavity[J]. Plasma Science and Technology, 2016, 18(3): 259-265. DOI: 10.1088/1009-0630/18/3/08
    [7]WU Hanyu(吴撼宇), ZENG Zhengzhong(曾正中), WANG Liangping(王亮平), GUO Ning(郭宁). Experimental Study of Current Loss of Stainless Steel Magnetically Insulated Transmission Line with Current Density at MA/cm Level[J]. Plasma Science and Technology, 2014, 16(6): 625-628. DOI: 10.1088/1009-0630/16/6/16
    [8]WU Guojiang (吴国将), ZHANG Xiaodong (张晓东). Calculations of the Ion Orbit Loss Region at the Edge of EAST[J]. Plasma Science and Technology, 2012, 14(9): 789-793. DOI: 10.1088/1009-0630/14/9/03
    [9]K. T. A. L. BURM. The Isentropic Exponent of Single-Ionized Mono-Atomic Plasmas[J]. Plasma Science and Technology, 2012, 14(8): 699-701. DOI: 10.1088/1009-0630/14/8/03
    [10]LI Jibo(李吉波), DING Siye(丁斯晔), WU Bin(吴斌), HU Chundong(胡纯栋). Simulations of Neutral Beam Ion Ripple Loss on EAST[J]. Plasma Science and Technology, 2012, 14(1): 78-82. DOI: 10.1088/1009-0630/14/1/17
  • Cited by

    Periodical cited type(7)

    1. Wang, Z., Li, R., Cao, B. et al. 3D hybrid simulation of postarc sheath expansion with nonuniform residual plasmas. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2024, 42(5): 053008. DOI:10.1116/6.0003859
    2. Cheng, X., Chen, H., Ge, G. et al. Influence of the vapor shield potential control on the post-arc sheath development in vacuum interrupters. Vacuum, 2024. DOI:10.1016/j.vacuum.2024.112957
    3. Zhang, W., Cheng, X., Ge, G. et al. PIC Numerical Calculation of the Effect of Self-Voltage Sharing Configuration on the Post Arc Particle Transport Characteristics in High-Voltage Vacuum Interrupters. 2024. DOI:10.1109/ICEPE-ST61894.2024.10792559
    4. Wang, L., Chen, Z., Wang, D. et al. Two-Dimensional Particle-in-Cell/Monte Carlo Collisional Simulation of the Post-Arc Breakdown in Vacuum Circuit Breakers. IEEE Transactions on Plasma Science, 2024, 52(8): 3228-3236. DOI:10.1109/TPS.2024.3449271
    5. Chen, H., Cheng, X., Ge, G. et al. Influence of Main Shield Voltage Distribution Configuration on the Post-arc Sheath Development of Vacuum Interrupters. Lecture Notes in Electrical Engineering, 2024. DOI:10.1007/978-981-99-7413-9_6
    6. Tang, Z., Xu, Z. Research on Three-Dimensional Numerical Simulation Method of Low Voltage Cable Arc. Lecture Notes in Electrical Engineering, 2023. DOI:10.1007/978-981-99-3404-1_76
    7. Shi, Q., Yang, P., Ye, J. et al. Particle Simulation of Near-Cathode Sheath in Vacuum Arc. Lecture Notes in Electrical Engineering, 2023. DOI:10.1007/978-981-99-0357-3_85

    Other cited types(0)

Catalog

    Article views (121) PDF downloads (83) Cited by(7)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return