Advanced Search+
Zhenghao REN (任政豪), Jinyuan LIU (刘金远), Feng WANG (王丰), Huishan CAI (蔡辉山), Zhengxiong WANG (王正汹), Wei SHEN (申伟). Influence of toroidal rotation on the tearing mode in tokamak plasmas[J]. Plasma Science and Technology, 2020, 22(6): 65102-065102. DOI: 10.1088/2058-6272/ab77d4
Citation: Zhenghao REN (任政豪), Jinyuan LIU (刘金远), Feng WANG (王丰), Huishan CAI (蔡辉山), Zhengxiong WANG (王正汹), Wei SHEN (申伟). Influence of toroidal rotation on the tearing mode in tokamak plasmas[J]. Plasma Science and Technology, 2020, 22(6): 65102-065102. DOI: 10.1088/2058-6272/ab77d4

Influence of toroidal rotation on the tearing mode in tokamak plasmas

Funds: This work was supported by National Natural Science Foundation of China (Grant Nos. 11975068 and 11605021), the National Key R&D Program of China (Grant No. 2017YFE0301900), the Key Research Program of Frontier Science of Chinese Academy of Sciences (Grant No. QYZDJSSW-SYS016), and the Youth Innovation Promotion Association of CAS and the Fundamental Research Funds for the Central Universities (Grant No. DUT18ZD101).
More Information
  • Received Date: December 16, 2019
  • Revised Date: February 18, 2020
  • Accepted Date: February 18, 2020
  • The stabilizing mechanism of toroidal rotation on the tearing mode is studied using the 3D toroidal resistive magnetohydrodynamic code M3D. It is found that the dominating mechanism, either the centrifugal effect or the Coriolis effect, depends on the specific pressure β and rotation frequency Ω. On the premise that Ω is sufficiently large, when β is greater than a critical value, the effect of the centrifugal force is dominant, and the stabilizing effect mainly comes from the modification of equilibrium induced by the centrifugal force; when β is less than a critical value, the stabilizing effect from the Coriolis force overcomes that from the centrifugal force. However, if Ω is small, then the effect of equilibrium modification due to the centrifugal force is not significant even if β is large. Finally, the results showed that toroidal rotation shear enhances the stabilizing effect.
  • [1]
    Fietz S et al 2013 Plasma Phys. Controlled Fusion 55 085010
    [2]
    Buttery R J et al 2008 Phys. Plasmas 15 056115
    [3]
    Huishan C et al 2017 Nucl. Fusion 57 056006
    [4]
    Wang S and Ma Z W 2015 Phys. Plasmas 22 122504
    [5]
    Chandra D et al 2015 Nucl. Fusion 55 053016
    [6]
    Bondeson A and Persson M 1986 Phys. Fluids 29 2997
    [7]
    Urquijo G, Bhattacharyya S N and Sen A 1997 Phys. Plasmas 4 239
    [8]
    Sen A, Chandra D and Kaw P 2013 Nucl. Fusion 53 053006
    [9]
    Li D, Yang W and Cai H S 2018 Plasma Sci. Technol 20 094002
    [10]
    White R L and Fitzpatrick R 2015 Phys. Plasmas 22 102507
    [11]
    La Haye R J et al 2000 Phys. Plasmas 7 3349
    [12]
    Paris R B and Sy W N 1983 Phys. Fluids 26 2966
    [13]
    Chen X L and Morrison P J 1990 Phys. Fluids B 2 495
    [14]
    Ren S M and Yu G Y 2001 Plasma Sci. Technol 3 1055
    [15]
    Wessen K P and Persson M 1991 J. Plasma Phys. 45 267
    [16]
    Coelho R and Lazzaro E 2007 Phys. Plasmas 14 012101
    [17]
    Wang Z X, Wei L and Yu F 2015 Nucl. Fusion 55 043005
    [18]
    Wei L et al 2016 Nucl. Fusion 56 106015
    [19]
    Tang W K et al 2020 Nucl. Fusion 60 026015
    [20]
    Park W et al 1999 Phys. Plasmas 6 1796
    [21]
    Furth H P, Killeen J and Rosenbluth M N 1963 Phys. Fluids 6 459
    [22]
    Maschke E K and Perrin H 1980 Phys. Plasmas 22 579
    [23]
    Solomon W M et al 2005 20th IAEA Fusion Energy Conf.(IAEA, Vienna) paper EX/P4-10
    [24]
    Kreuger K et al 2013 Radiat. Eff. Defects Solids 168 766
    [25]
    Janeschitz G et al 1995 J. Nucl. Mater. 220 73
    [26]
    Ren C, Chu M S and Callen J D 1999 Phys. Plasmas 6 1203
    [27]
    La Haye R J and Buttery R J 2009 Phys. Plasmas 16 022107
    [28]
    Chu M S et al 1995 Phys. Plasmas 2 2236
    [29]
    Chandra D et al 2005 Nucl. Fusion 45 524
  • Related Articles

    [1]Peng DENG, Wenzhe MAO, Zhipeng CHEN, Yinan ZHOU, Peng SHI, Zhoujun YANG, Li GAO, Tao LAN, Jinlin XIE, Hong LI, Zian WEI, Adi LIU, Chu ZHOU, Weixing DING, Wandong LIU, Ge ZHUANG. The impact of toroidal mode coupling on high-density discharges in J-TEXT[J]. Plasma Science and Technology, 2024, 26(12): 125101. DOI: 10.1088/2058-6272/ad659f
    [2]Liangkang DONG, Shaoyong CHEN, Maolin MOU, Yang LUO, Chenchen QIN, Changjian TANG. Investigation on the roles of equilibrium toroidal rotation during edge-localized mode mitigated by resonant magnetic perturbations[J]. Plasma Science and Technology, 2024, 26(1): 015102. DOI: 10.1088/2058-6272/ad0d4d
    [3]Weikang TANG (汤炜康), Lai WEI (魏来), Zhengxiong WANG (王正汹), Jialei WANG (王佳磊), Tong LIU (刘桐), Shu ZHENG (郑殊). Effects of resonant magnetic perturbation on locked mode of neoclassical tearing modes[J]. Plasma Science and Technology, 2019, 21(6): 65103-065103. DOI: 10.1088/2058-6272/ab0a18
    [4]Yun YUAN (袁赟), Xingqiang LU (路兴强), Jiaqi DONG (董家齐), Zhixiong HE (何志雄), Ruibo ZHANG (张睿博), Shijia CHEN (陈诗佳), Xueyu GONG (龚学余), Yun YUAN (袁赟), Xingqiang LU (路兴强), Jiaqi DONG (董家齐), Zhixiong HE (何志雄), Ruibo ZHANG (张睿博), Shijia CHEN (陈诗佳), Xueyu GONG (龚学余). Influence of stationary driven helical current on the m=2/n=1 resistive tearing mode[J]. Plasma Science and Technology, 2019, 21(5): 55101-055101. DOI: 10.1088/2058-6272/aafdc7
    [5]Ding LI (李定), Wen YANG (杨文), Huishan CAI (蔡辉山). On theoretical research for nonlinear tearing mode[J]. Plasma Science and Technology, 2018, 20(9): 94002-094002. DOI: 10.1088/2058-6272/aabde4
    [6]Jun CHEN (陈俊), Ruiji HU (胡睿佶), Bo LYU (吕波), Fudi WANG (王福地), Xiaojie WANG (王晓洁), Handong XU (徐旵东), Yingying LI (李颖颖), Jia FU (符佳), Xianghui YIN (尹相辉), Dajun WU (吴大俊), Fukun LIU (刘甫坤), Qing ZANG (臧庆), Haiqing LIU (刘海庆), Yuejiang SHI (石跃江), Shifeng MAO (毛世峰), Yi YU (余羿), Baonian WAN (万宝年), Minyou YE (叶民友), Yongcai SHEN (沈永才), EAST team. Observation and characterization of the effect of electron cyclotron waves on toroidal rotation in EAST L-mode discharges[J]. Plasma Science and Technology, 2017, 19(10): 105101. DOI: 10.1088/2058-6272/aa7cec
    [7]PAN Xiayun (潘夏云), WANG Fudi (王福地), ZHANG Xinjun (张新军), LYU Bo (吕波), CHEN Jun (陈俊), LI Yingying (李颖颖), FU Jia (符佳), SHI Yuejiang (石跃江), YU Yi (余羿), YE Minyou (叶民友), WAN Baonian (万宝年). Observation of Central Toroidal Rotation Induced by ICRF on EAST[J]. Plasma Science and Technology, 2016, 18(2): 114-119. DOI: 10.1088/1009-0630/18/2/03
    [8]WU Jing (吴静), YAO Lieming (姚列明), ZHU Jianhua(朱建华), HAN Xiaoyu (韩晓玉), LI Wenzhu(李文柱). Profile Measurement of Ion Temperature and Toroidal Rotation Velocity with Charge Exchange Recombination Spectroscopy Diagnostics in the HL-2A Tokamak[J]. Plasma Science and Technology, 2012, 14(11): 953-957. DOI: 10.1088/1009-0630/14/11/02
    [9]LI Li(李莉), LIU Yue (刘悦), XU Xinyang(许欣洋), XIA Xinnian(夏新念). The Effect of Equilibrium Current Profiles on MHD Instabilities in Tokamaks[J]. Plasma Science and Technology, 2012, 14(1): 14-19. DOI: 10.1088/1009-0630/14/1/04
    [10]HE Zhixiong, DONG Jiaqi, HE Hongda, JIANG Haibin, GAO Zhe, ZHANG Jinhua. MHD Equilibrium Configuration Reconstructions for HL-2A Tokamak[J]. Plasma Science and Technology, 2011, 13(4): 424-430.
  • Cited by

    Periodical cited type(7)

    1. Salewski, M., Spong, D.A., Aleynikov, P. et al. Energetic particle physics: Chapter 7 of the special issue: on the path to tokamak burning plasma operation. Nuclear Fusion, 2025, 65(4): 043002. DOI:10.1088/1741-4326/adb763
    2. Zhang, L.L., Jhang, H.G., Kang, J.S. et al. M3D-K simulations of beam-driven instabilities in an energetic particle dominant KSTAR discharge. Nuclear Fusion, 2024, 64(7): 076001. DOI:10.1088/1741-4326/ad4535
    3. Wang, H., Jiang, S., Liu, T. et al. Effects of diamagnetic drift on nonlinear interaction between multi-helicity neoclassical tearing modes. Chinese Physics B, 2024, 33(6): 065202. DOI:10.1088/1674-1056/ad24d3
    4. Ren, Z., Wang, F., Cai, H. et al. Influence of toroidal rotation on nonlinear evolution of tearing mode in tokamak plasmas. Plasma Physics and Controlled Fusion, 2023, 65(1): 015007. DOI:10.1088/1361-6587/aca4f4
    5. Cai, H., Li, D. Recent progress in the interaction between energetic particles and tearing modes. National Science Review, 2022, 9(11): nwac019. DOI:10.1093/nsr/nwac019
    6. Jiang, S., Tang, W., Wei, L. et al. Effects of plasma radiation on the nonlinear evolution of neo-classical tearing modes in tokamak plasmas. Plasma Science and Technology, 2022, 24(5): 055101. DOI:10.1088/2058-6272/ac500b
    7. Liu, T., Wei, L., Wang, F. et al. Coriolis Force Effect on Suppression of Neo-Classical Tearing Mode Triggered Explosive Burst in Reversed Magnetic Shear Tokamak Plasmas. Chinese Physics Letters, 2021, 38(4): 045204. DOI:10.1088/0256-307X/38/4/045204

    Other cited types(0)

Catalog

    Article views (200) PDF downloads (113) Cited by(7)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return