Advanced Search+
Yuxi XIA (夏玉玺), Shengpeng YANG (杨生鹏), Shaoyong CHEN (陈少永), Changjian TANG (唐昌建). Focusing characteristics of the relativistic electron beam transmitting in ion channel[J]. Plasma Science and Technology, 2020, 22(8): 85001-085001. DOI: 10.1088/2058-6272/ab785d
Citation: Yuxi XIA (夏玉玺), Shengpeng YANG (杨生鹏), Shaoyong CHEN (陈少永), Changjian TANG (唐昌建). Focusing characteristics of the relativistic electron beam transmitting in ion channel[J]. Plasma Science and Technology, 2020, 22(8): 85001-085001. DOI: 10.1088/2058-6272/ab785d

Focusing characteristics of the relativistic electron beam transmitting in ion channel

Funds: The National Key Research and Development Program of China (No. 2017YFE0300501), and the National Magnetic Confinement Fusion Energy Development Research Project (No. 2017YFE0301203).
More Information
  • Received Date: November 17, 2019
  • Revised Date: February 19, 2020
  • Accepted Date: February 19, 2020
  • Based on the beam–plasma system model established in this paper, the trajectory of the electron beam in the ion channel is studied quantitatively through the envelope equation. Under different initial system parameters, the focusing transmission conditions of the beam in the ion channel are discussed. Then, a series of particle-in-cell simulations are performed, which generally versifies the theoretical results and shows some further details of the focusing behavior of the beam. It is found that the deceleration of some electrons around the focusing point or the beam–plasma interaction at the ion channel boundary will result in the generation of the residual electrons, which forms the electron return current that leads to the new instabilities influencing the focusing characteristics of the beam.
  • [1]
    Faure J et al 2006 Nature 444 737
    [2]
    Kneip S et al 2010 Nat. Phys. 6 980
    [3]
    Cipiccia S et al 2012 J. Appl. Phys. 111 063302
    [4]
    Sei N et al 2015 Phys. Lett. A 379 2399
    [5]
    Leemans W P et al 2003 Phys. Rev. Lett. 91 074802
    [6]
    Lee D S, Choi Y H and Jeong H D 2017 J. Ind. Eng. Chem.53 82
    [7]
    Bennett N et al 2017 Phys. Plasmas. 24 012702
    [8]
    Sanchez P P et al 2015 Nucl. Instrum. Methods Phys. Res. Sec.A 778 67
    [9]
    Duran Yildiz H et al 2019 Nucl. Instrum. Methods Phys. Res.Sec. A 939 74
    [10]
    Chen C H et al 2002 IEEE Trans. Plasma Sci. 30 1108
    [11]
    Clayton C E et al 2002 Physical Review Letters 88 154801
    [12]
    Hafz N A M et al 2008 Nat. Photonics. 2 571
    [13]
    Neog N K and Mohanty S R 2007 Physics Letters A 361 377
    [14]
    Li F et al 2013 Phys. Rev. Lett. 111 015003
    [15]
    de la Ossa A M et al 2013 Phys. Rev. Lett. 111 245003
    [16]
    Bennett W H et al 1934 Phys. Rev. 45 890
    [17]
    Litos M et al 2014 Nature 515 92
    [18]
    Wang W T et al 2016 Phys. Rev. Lett. 117 124801
    [19]
    Lee Buchanan H 1987 Phys. Fluids. 30 221
    [20]
    Okamura R, Nakamura Y and Kawashima N 1977 Plasma Phys. 19 997
    [21]
    Miller J D et al 1992 Phys. Fluids B 4 4121
    [22]
    Mangles S P D et al 2006 Phys. Rev. Lett. 96 215001
    [23]
    van Tilborg J et al 2015 Phys. Rev. Lett. 115 184802
    [24]
    van Tilborg J et al 2017 Phys. Rev. Accel. Beams. 20 032803
    [25]
    Mangles S P D et al 2004 Nature 431 535
    [26]
    Zhou Q et al 2016 Physics of Plasmas. 23 063107
    [27]
    Tsung F S et al 2004 Phys. Rev. Lett. 93 185002
    [28]
    Swanekamp S B et al 1992 Phys. Fluids B 4 1332
    [29]
    Jha P and Kumar P 1996 IEEE Trans. Plasma Sci. 24 1359
    [30]
    Ryckbosch F, Polfliet S and Eeckhout L 2012 ACM Trans.Arch. Code Optim. 8 52
    [31]
    Kartashov I N et al 2018 Plasma Phys. Rep. 44 289
    [32]
    Rainwater J C et al 1983 J. Chem. Phys. 79 1462
    [33]
    Djilali B et al 2014 Plasma Sci. Technol. 16 588
    [34]
    Lovelace R V and Sudan R N 1971 Phys. Rev. Lett. 27 1256
    [35]
    Bret A, Gremillet L and Dieckmann M E 2010 Phys. Plasmas.17 120501
  • Related Articles

    [1]Changle LIU, Lei LI, Yanzi HE, Peng ZHANG, Yu ZHOU, Jun SONG, Songtao WU. An innovative approach to effective breeding blanket design for future fusion reactors[J]. Plasma Science and Technology, 2024, 26(10): 105601. DOI: 10.1088/2058-6272/ad5a66
    [2]Zhongtian WANG (王中天), Huidong LI (李会东), Xueke WU (吴雪科). Loss-cone instabilities for compact fusion reactor and field-reversed configuration[J]. Plasma Science and Technology, 2019, 21(2): 25101-025101. DOI: 10.1088/2058-6272/aaead9
    [3]Dongye ZHAO (赵栋烨), Cong LI (李聪), Yong WANG (王勇), Zhiwei WANG (王志伟), Liang GAO (高亮), Zhenhua HU (胡振华), Jing WU (吴婧), Guang-Nan LUO (罗广南), Hongbin DING (丁洪斌). Temporal and spatial dynamics of optical emission from laser ablation of the first wall materials of fusion device[J]. Plasma Science and Technology, 2018, 20(1): 14022-014022. DOI: 10.1088/2058-6272/aa96a0
    [4]Shanwen ZHANG (张善文), Yuntao SONG (宋云涛), Linlin TANG (汤淋淋), Zhongwei WANG (王忠伟), Xiang JI (戢翔), Shuangsong DU (杜双松). Electromagnetic–thermal–structural coupling analysis of the ITER edge localized mode coil with fiexible supports[J]. Plasma Science and Technology, 2017, 19(5): 55601-055601. DOI: 10.1088/2058-6272/aa57f4
    [5]Hantian ZHANG (张含天), Tianwei LI (厉天威), Bing LUO (罗兵), Yi WU (吴翊), Fei YANG (杨飞), Hao SUN (孙昊), Li TANG (唐力). Influence of the gassing materials on the dielectric properties of air[J]. Plasma Science and Technology, 2017, 19(5): 55504-055504. DOI: 10.1088/2058-6272/aa57f5
    [6]ZHANG Xiujie (张秀杰), PAN Chuanjie (潘传杰), XU Zengyu (许增裕). MHD Stability Analysis and Flow Controls of Liquid Metal Free Surface Film Flows as Fusion Reactor PFCs[J]. Plasma Science and Technology, 2016, 18(12): 1204-1214. DOI: 10.1088/1009-0630/18/12/11
    [7]WANG Shijia (王时佳), WANG Shaojie (王少杰). Effect of Fuelling Depth on the Fusion Performance and Particle Confinement of a Fusion Reactor[J]. Plasma Science and Technology, 2016, 18(12): 1155-1161. DOI: 10.1088/1009-0630/18/12/03
    [8]YANG Yu (杨愚), S. MARUYAMA, A. FOSSEN, F. VILLERS, G. KISS, ZHANG Bo (张博), LI Bo (李波), JIANG Tao (江涛), HUANG Xiangmei (黄向玫). Nuclear Safety Functions of ITER Gas Injection System Instrumentation and Control and the Concept Design[J]. Plasma Science and Technology, 2016, 18(8): 875-878. DOI: 10.1088/1009-0630/18/8/15
    [9]ZHAO Dongye(赵栋烨), FARID Nazar(纳扎), HAI Ran(海然), WU Ding(吴鼎), DING Hongbin(丁洪斌). Diagnostics of First Wall Materials in a Magnetically Confined Fusion Device by Polarization-Resolved Laser-Induced Breakdown Spectroscopy[J]. Plasma Science and Technology, 2014, 16(2): 149-154. DOI: 10.1088/1009-0630/16/2/11
    [10]HAO Junchuan (郝俊川), SONG Yuntao (宋云涛), WANG Xiaoyu (王晓宇), K. IOKI, DU Shuangsong (杜双松), JI Xiang (戢翔), FENG Changle (冯昌乐), XU Yang (徐扬). Static Structural Analysis for a Neutron Shielding Block in ITER[J]. Plasma Science and Technology, 2013, 15(2): 142-147. DOI: 10.1088/1009-0630/15/2/13

Catalog

    Article views (227) PDF downloads (315) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return