Advanced Search+
Junfeng SHAO (邵俊峰), Jin GUO (郭劲), Qiuyun WANG (王秋云), Anmin CHEN (陈安民), Mingxing JIN (金明星). Influence of target temperature on femtosecond laser-ablated brass plasma spectroscopy[J]. Plasma Science and Technology, 2020, 22(7): 74001-074001. DOI: 10.1088/2058-6272/ab7901
Citation: Junfeng SHAO (邵俊峰), Jin GUO (郭劲), Qiuyun WANG (王秋云), Anmin CHEN (陈安民), Mingxing JIN (金明星). Influence of target temperature on femtosecond laser-ablated brass plasma spectroscopy[J]. Plasma Science and Technology, 2020, 22(7): 74001-074001. DOI: 10.1088/2058-6272/ab7901

Influence of target temperature on femtosecond laser-ablated brass plasma spectroscopy

Funds: We acknowledge the support by National Natural Science Foundation of China (Nos. 11674128, 11674124 and 11974138) and the Jilin Province Scientific and Technological Development Program, China (No. 20170101063JC).
More Information
  • Received Date: November 21, 2019
  • Revised Date: February 19, 2020
  • Accepted Date: February 21, 2020
  • Spectral intensity, electron temperature and density of laser-induced plasma (LIP) are important parameters for affecting sensitivity of laser-induced breakdown spectroscopy (LIBS). Increasing target temperature is an easy and feasible method to improve the sensitivity. In this paper, a brass target in a temperature range from 25 °C to 200 °C was ablated to generate the LIP using femtosecond pulse. Time-resolved spectral emission of the femtosecond LIBS was measured under different target temperatures. The results showed that, compared with the experimental condition of 25 °C, the spectral intensity of the femtosecond LIP was enhanced with more temperature target. In addition, the electron temperature and density were calculated by Boltzmann equation and Stark broadening, indicating that the changes in the electron temperature and density of femtosecond LIP with the increase of the target temperature were different from each other. By increasing the target temperature, the electron temperature increased while the electron density decreased. Therefore, in femtosecond LIBS, a hightemperature and low-density plasma with high emission can be generated by increasing the target temperature. The increase in the target temperature can improve the resolution and sensitivity of femtosecond LIBS.
  • [1]
    Hahn D W and Lunden M M 2000 Aerosol Sci. Technol. 33 30
    [2]
    Wang Z, Dong F Z and Zhou W D 2015 Plasma Sci. Technol.17 617
    [3]
    Wang Z et al 2014 Front. Phys. 9 419
    [4]
    Wang Z Z et al 2016 Front. Phys. 11 114213
    [5]
    Wang Q Q et al 2012 Front. Phys. 7 701
    [6]
    Fu Y Y et al 2019 Plasma Sci. Technol. 21 030101
    [7]
    Nicolas G, Mateo M P and Piñon V 2007 J. Anal. At.Spectrom. 22 1244
    [8]
    Winefordner J D et al 2004 J. Anal. At. Spectrom. 19 1061
    [9]
    Barbini R et al 2002 Spectrochim. Acta B 57 1203
    [10]
    Haider A F M Y and Khan Z H 2012 Opt. Laser Technol.44 1654
    [11]
    Sancey L et al 2016 Sci. Rep. 6 24377
    [12]
    Harilal S S et al 2018 Appl. Phys. Rev. 5 021301
    [13]
    Zhou W D et al 2013 J. Anal. At. Spectrom. 28 702
    [14]
    Zhou W D et al 2010 Opt. Express 18 2573
    [15]
    Kexue L I et al 2010 Spectrochim. Acta B 65 420
    [16]
    Wang Q Y et al 2019 Plasma Sci. Technol. 21 065504
    [17]
    Shen X K et al 2007 Appl. Phys. Lett. 91 081501
    [18]
    Wang Q Y et al 2018 Phys. Plasmas 25 073301
    [19]
    Shen X K et al 2007 J. Appl. Phys. 102 093301
    [20]
    Guo L B et al 2011 Opt. Express 19 14067
    [21]
    Wang Y et al 2016 J. Anal. At. Spectrom. 31 1974
    [22]
    Rashid B et al 2011 Phys. Plasmas 18 073301
    [23]
    Shen J et al 2015 Plasma Sci. Technol. 17 147
    [24]
    Sun D X et al 2014 Plasma Sci. Technol. 16 374
    [25]
    Lin X M, Li H and Yao Q H 2015 Plasma Sci. Technol. 17 953
    [26]
    Wang Y et al 2019 Plasma Sci. Technol. 21 034013
    [27]
    He X N et al 2011 Opt. Express 19 10997
    [28]
    Chen A M et al 2015 Opt. Express 23 24648
    [29]
    Harilal S S et al 2005 IEEE Trans. Plasma Sci. 33 474
    [30]
    Lu Y et al 2015 J. Anal. At. Spectrom. 30 2303
    [31]
    Pandey P K and Thareja R K 2013 Phys. Plasmas 20 022117
    [32]
    Singh K S and Sharma A K 2016 Phys. Plasmas 23 122104
    [33]
    De Giacomo A et al 2013 Anal. Chem. 85 10180
    [34]
    Chen A M et al 2015 Phys. Plasmas 22 033301
    [35]
    Aguirre M A et al 2013 Spectrochim. Acta B 79–80 88
    [36]
    Yang X Y et al 2017 Talanta 163 127
    [37]
    Darbani S M R et al 2014 J. Eur. Opt. Soc.: Rapid Publ. 9 14058
    [38]
    Eschlböck-Fuchs S et al 2013 Spectrochim. Acta B 87 36
    [39]
    Tavassoli S H and Khalaji M 2008 J. Appl. Phys. 103 083118
    [40]
    Hai R et al 2019 J. Anal. At. Spectrom. 34 2378
    [41]
    Tavassoli S H and Gragossian A 2009 Opt. Laser Technol.41 481
    [42]
    Zhang D et al 2020 Optik 202 163511
    [43]
    Li S C et al 2015 Appl. Surf. Sci. 355 681
    [44]
    Wang T F et al 2015 Phys. Plasmas 22 033106
    [45]
    Wang X W et al 2018 J. Anal. At. Spectrom. 33 168
    [46]
    Chen A M et al 2011 Opt. Commun. 284 2192
    [47]
    Guo J et al 2012 Opt. Commun. 285 1895
    [48]
    Zhang D et al 2017 Opt. Laser Technol. 96 117
    [49]
    Wang Q Y et al 2020 Opt. Laser Technol. 122 105862
    [50]
    Pandey P K, Gupta S L and Thareja R K 2015 Phys. Plasmas 22 073301
    [51]
    Xu W P et al 2019 J. Anal. At. Spectrom. 34 1018
    [52]
    Sabsabi M and Cielo P 1995 Appl. Spectrosc. 49 499
    [53]
    Kuzuya M et al 1993 Appl. Spectrosc. 47 1659
    [54]
    Cristoforetti G et al 2004 Spectrochim. Acta B 59 1907
    [55]
    Ujihara K 1972 J. Appl. Phys. 43 2376
    [56]
    Guo K M et al 2019 AIP Adv. 9 065214
    [57]
    Harilal S S et al 2012 Phys. Plasmas 19 083504
    [58]
    LaHaye N L et al 2014 J. Appl. Phys. 115 163301
    [59]
    Shaikh N M et al 2013 Spectrochim. Acta B 88 198
    [60]
    Wang Y et al 2018 Phys. Plasmas 25 033302
    [61]
    Yang D P et al 2017 Acta Phys. Sin. 66 115201
    [62]
    Wang Y et al 2020 Phys. Plasmas 27 023507
    [63]
    Zorba V, Mao X L and Russo R E 2015 Spectrochim. Acta B 113 37
    [64]
    Bashir S et al 2012 Appl. Phys. 107 203
    [65]
    Wang Y et al 2020 Opt. Laser Technol. 122 105887
    [66]
    Wang Q Y et al 2019 J. Anal. At. Spectrom. 34 1242
    [67]
    Hafez M A et al 2003 Plasma Sources Sci. Technol. 12 185
    [68]
    Zhang D et al 2018 Phys. Plasmas 25 083305
  • Related Articles

    [1]Miao LIU (刘淼), Anmin CHEN (陈安民), Yutong CHEN (陈雨桐), Xiangyu ZENG (曾祥榆), Qiuyun WANG (王秋云), Dan ZHANG (张丹), Dapeng YANG (杨大鹏), Mingxing JIN (金明星). Comparison of sample temperature effect on femtosecond and nanosecond laser-induced breakdown spectroscopy[J]. Plasma Science and Technology, 2021, 23(7): 75501-075501. DOI: 10.1088/2058-6272/abf997
    [2]Wei QI (齐巍), Qiuyun WANG (王秋云), Junfeng SHAO (邵俊峰), Anmin CHEN (陈安民), Mingxing JIN (金明星). Influence of target temperature on AlO emission of femtosecond laser-induced Al plasmas[J]. Plasma Science and Technology, 2021, 23(4): 45501-045501. DOI: 10.1088/2058-6272/abe52c
    [3]Qiuyun WANG (王秋云), Anmin CHEN (陈安民), Wanpeng XU (徐万鹏), Dan ZHANG (张丹), Ying WANG (王莹), Suyu LI (李苏宇), Yuanfei JIANG (姜远飞), Mingxing JIN (金明星). Time-resolved spectroscopy of femtosecond laser-induced Cu plasma with spark discharge[J]. Plasma Science and Technology, 2019, 21(6): 65504-065504. DOI: 10.1088/2058-6272/ab0fa6
    [4]Ying WANG (王莹), Anmin CHEN (陈安民), Qiuyun WANG (王秋云), Dan ZHANG (张丹), Laizhi SUI (隋来志), Suyu LI (李苏宇), Yuanfei JIANG (姜远飞), Mingxing JIN (金明星). Enhancement of optical emission generated from femtosecond double-pulse laser-induced glass plasma at different sample temperatures in air[J]. Plasma Science and Technology, 2019, 21(3): 34013-034013. DOI: 10.1088/2058-6272/aaefa1
    [5]Congyuan PAN (潘从元), Jiao HE (何娇), Guangqian WANG (王广谦), Xuewei DU (杜学维), Yongbin LIU (刘永斌), Yahui SU (苏亚辉). An efficient procedure in quantitative analysis using laser-induced breakdown spectroscopy[J]. Plasma Science and Technology, 2019, 21(3): 34012-034012. DOI: 10.1088/2058-6272/aaf50f
    [6]Minchao CUI (崔敏超), Yoshihiro DEGUCHI (出口祥啓), Zhenzhen WANG (王珍珍), Seiya TANAKA (田中诚也), Min-Gyu JEON (全敏奎), Yuki FUJITA (藤田裕贵), Shengdun ZHAO (赵升吨). Remote open-path laser-induced breakdown spectroscopy for the analysis of manganese in steel samples at high temperature[J]. Plasma Science and Technology, 2019, 21(3): 34007-034007. DOI: 10.1088/2058-6272/aaeba7
    [7]WANG Ying (王莹), CHEN Anmin (陈安民), LI Suyu (李苏宇), SUI Laizhi (隋来志), LIU Dunli (刘敦利), LI Shuchang (李舒畅), LI He (李贺), JIANG Yuanfei (姜远飞), JIN Mingxing (金明星). Re-Heating Effect on the Enhancement of Plasma Emission Generated from Fe Under Femtosecond Double-Pulse Laser Irradiation[J]. Plasma Science and Technology, 2016, 18(12): 1192-1197. DOI: 10.1088/1009-0630/18/12/09
    [8]Ali KHUMAENI, Wahyu Setia BUDI, Asep Yoyo WARDAYA, Rinda HEDWIG, Koo Hendrik KURNIAWAN. Rapid Detection of Oil Pollution in Soil by Using Laser-Induced Breakdown Spectroscopy[J]. Plasma Science and Technology, 2016, 18(12): 1186-1191. DOI: 10.1088/1009-0630/18/12/08
    [9]LIU Xiaoliang(刘小亮), CAO Yu(曹瑜), WANG Xiaoshan(王小山), LIU Zuoye(刘作业), GUO Zeqin(郭泽钦), SHI Yanchao(史彦超), SUN Shaohua(孙少华), LI Yuhong(李玉红), HU Bitao(胡碧涛). Optical Emission Spectroscopy Analysis of the Early Phase During Femtosecond Laser-Induced Air Breakdown[J]. Plasma Science and Technology, 2014, 16(9): 815-820. DOI: 10.1088/1009-0630/16/9/02
    [10]LIU Feng(刘峰), LIN Xiaoxuan(林晓宣), LIU Bicheng(刘必成), DING Wenjun (丁文君), DU Fei(杜飞), LI Yutong(李玉同), MA Jinglong(马景龙), LIU Xiaolong (刘晓龙), et al. Transmission Degradation of Femtosecond Laser Pulses in Opened Cone Targets[J]. Plasma Science and Technology, 2012, 14(1): 24-27. DOI: 10.1088/1009-0630/14/1/06
  • Cited by

    Periodical cited type(12)

    1. Abdelazim, A., Aboulfotouh, A., Omar, M. et al. Enhanced laser-induced breakdown spectroscopy by pre-heated target and electric field: comprehensive review. Journal of Optics (India), 2025. DOI:10.1007/s12596-025-02651-5
    2. Wang, Y., Gao, H., Ye, J. et al. Simulation of laser-induced plasma temperature based on machine learning. Physics of Plasmas, 2024, 31(10): 103302. DOI:10.1063/5.0225293
    3. Yang, X., Wang, X., Li, D. et al. Effect of liquid aerosol temperature on the detection performance of LIBS for analysis of phosphorus element in water. Journal of Analytical Atomic Spectrometry, 2024, 39(2): 433-438. DOI:10.1039/d3ja00286a
    4. Wang, Q., Liu, Y., Jiang, L. et al. Metal micro/nanostructure enhanced laser-induced breakdown spectroscopy. Analytica Chimica Acta, 2023. DOI:10.1016/j.aca.2023.340802
    5. Liu, R.-B., Yin, Y.-S. Research progress on the related physical mechanism of laser-induced breakdown spectroscopy | [激光诱导击穿光谱技术相关物理机制研究进展]. Chinese Optics, 2023. DOI:10.37188/CO.2023-0019
    6. Liu, Y., Wang, Q., Jiang, L. et al. Femtosecond laser-induced Cu plasma spectra at different laser polarizations and sample temperatures. Chinese Physics B, 2022, 31(10): 105201. DOI:10.1088/1674-1056/ac6864
    7. Yang, Z., Ren, J., Du, M. et al. Enhanced Laser-Induced Breakdown Spectroscopy for Heavy Metal Detection in Agriculture: A Review. Sensors, 2022, 22(15): 5679. DOI:10.3390/s22155679
    8. Carter, S., Clough, R., Fisher, A. et al. Atomic spectrometry update: Review of advances in the analysis of metals, chemicals and materials. Journal of Analytical Atomic Spectrometry, 2021, 36(11): 2241-2305. DOI:10.1039/d1ja90049h
    9. Liu, M., Chen, A., Chen, Y. et al. Comparison of sample temperature effect on femtosecond and nanosecond laser-induced breakdown spectroscopy. Plasma Science and Technology, 2021, 23(7): 075501. DOI:10.1088/2058-6272/abf997
    10. Qi, W., Wang, Q., Shao, J. et al. Influence of target temperature on AlO emission of femtosecond laser-induced Al plasmas. Plasma Science and Technology, 2021, 23(4): 045501. DOI:10.1088/2058-6272/abe52c
    11. Li, Q., Chen, A., Zhang, D. et al. Time-resolved electron temperature and density of spark discharge assisted femtosecond laser-induced breakdown spectroscopy. Optik, 2021. DOI:10.1016/j.ijleo.2020.165812
    12. Hou, Z., Jeong, S., Deguchi, Y. et al. Way-out for laser-induced breakdown spectroscopy. Plasma Science and Technology, 2020, 22(7): 070101. DOI:10.1088/2058-6272/ab95f7

    Other cited types(0)

Catalog

    Article views (154) PDF downloads (152) Cited by(12)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return