Advanced Search+
Rennan B MORALES, Stéphane HEURAUX, Roland SABOT, Sébastien HACQUIN, Frédéric CLAIRET, the Tore Supra Team. Reconstruction of hollow areas in density profiles from frequency swept reflectometry[J]. Plasma Science and Technology, 2020, 22(6): 64005-064005. DOI: 10.1088/2058-6272/ab7b5a
Citation: Rennan B MORALES, Stéphane HEURAUX, Roland SABOT, Sébastien HACQUIN, Frédéric CLAIRET, the Tore Supra Team. Reconstruction of hollow areas in density profiles from frequency swept reflectometry[J]. Plasma Science and Technology, 2020, 22(6): 64005-064005. DOI: 10.1088/2058-6272/ab7b5a

Reconstruction of hollow areas in density profiles from frequency swept reflectometry

Funds: This work has been carried out with the support of the Brazilian National Council for Scientific and Technological Development (CNPq) under the Science Without Borders programme, within the framework of the French Federation for Magnetic Fusion Studies (FR-FCM) and of the EUROfusion consortium with funding from the Euratom research and training programme 2014–2018 and 2019–2020 under grant agreement No. 633 053, and also been part-funded by the RCUK Energy Programme
[grant number EP/P012450/1]. The views and opinions expressed herein do not necessarily reflect those of the European Commission.
More Information
  • Received Date: October 30, 2019
  • Revised Date: February 27, 2020
  • Accepted Date: February 29, 2020
  • The standard density profile reconstruction techniques are based on the WKB approximation of the probing wave’s phase, making them unable to properly reconstruct blind areas in the cut-off frequency profile. The reconstruction suffers a significant immediate error that is not rapidly damped. It is demonstrated that even though no reflections occur inside the hollow region causing the blind area, the higher probing frequencies that propagate through it carry information that can be used to estimate its properties. The usually ignored full-wave effects were investigated with the use of full-wave simulations in 1D, with special attention paid to the frequency band where they are dominant. A database of perturbation signals was simulated on five-dimensions of parameters and an application of the database inversion was demonstrated for a magnetic island in a Tore Supra discharge. The new adapted reconstruction scheme improved the description of the density profile inside the hollow region and also along 10 cm after it.
  • [1]
    Wang G et al 2003 Rev. Sci. Instrum. 74 1525
    [2]
    Moreau P et al 2000 Rev. Sci. Instrum. 71 74–81
    [3]
    Clairet F et al 2001 Rev. Sci. Instrum. 72 340–3
    [4]
    Silva A et al 1996 Rev. Sci. Instrum. 67 4138–45
    [5]
    Varela P et al 2006 Nucl. Fusion 46 S693
    [6]
    Sirinelli A et al 2010 Rev. Sci. Instrum. 81 10D939
    [7]
    Clairet F et al 2003 Rev. Sci. Instrum. 74 1481–4
    [8]
    Clairet F et al 2011 Rev. Sci. Instrum. 82 083502
    [9]
    Briolle F, Lima R and Mendes R V 2009 Meas. Sci. Technol.20 105502
    [10]
    Doyle E J 2015 Status of the system design and component testing for the ITER low-field side reflectometer system 12th Int. Reflectometry Workshop (Jülich, Germany)
    [11]
    Heuraux S, Clairet F and da Silva F 2009 An X-modereflectometry study on the reflection point for the density profile reconstruction 9th Int. Reflectometry Workshop (Lisbon, Portugal) (www.ipfn.tecnico.ulisboa.pt/irw9)
    [12]
    Bottollier-Curtet H and Ichtchenko G 1987 Rev. Sci. Instrum.58 539–46
    [13]
    Shelukhin D A et al 2011 X-mode lower cutoff high field side reflectometer for electron density profile measurements in T-10 tokamak 11th Int. Reflectometry Workshop (Palaiseau,France) (www.lptp.polytechnique.fr/news/11/Workshop/index.html)
    [14]
    Bottollier-Curtet H 1986 Réflectométrie hyperfréquence pour la détermination de la densité électronique et de ses fluctuations sur le tokamak Petula-B PhD Thesis Universitéde Paris XI
    [15]
    Morales B R et al 2017 Rev. Sci. Instrum. 88 043503
    [16]
    Sakamoto R et al 2013 Nucl. Fusion 53 063007
    [17]
    Donné A J H et al 2005 Phys. Rev. Lett. 94 085001
    [18]
    Baiocchi B et al 2015 Nucl. Fusion 55 123001
    [19]
    Vayakis G et al 2006 Nucl. Fusion 46 S836–45
    [20]
    Conte S D and Boor C W D 1980 Elementary Numerical Analysis: An Algorithmic Approach (New York: McGraw-Hill)
    [21]
    Colin M 2001 Modelisations d’un reflectometre mode X en vue de caracteriser les fluctuations de densite et de champ magnetique: applications aux signaux de tore supra PhDThesis Université de Lorraine
    [22]
    Morales B R 2018 Density profile reconstruction methods for X-mode reflectometry PhD Thesis Université de Lorraine
    [23]
    Clairet F et al 2005 FM-CW reflectometry for MHD activity measurements on Tore Supra Proc. 7th Intl. Reflectometry Workshop for fusion plasma diagnostics—IRW7 Garching,IPP Report II/9 p 104
    [24]
    Vermare L et al 2005 Plasma Phys. Control. Fusion 47 1895–909
    [25]
    Bergmann A, Poli E and Peeters A G 2009 Phys. Plasmas 16 092507
    [26]
    Poli E et al 2010 Plasma Phys. Control. Fusion 52 124021
    [27]
    Clairet F et al 2017 Rev. Sci. Instrum. 88 113506
    [28]
    da Silva F, Heuraux S, Ricardo E and Ribeiro T 2017 J. Instrum. 14 C08004

Catalog

    Article views (143) PDF downloads (83) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return