Advanced Search+
Bo PENG (彭勃), Guorong ZHANG (张国荣). A voltage support control strategy based on three-port flexible multi-state switch in distribution networks[J]. Plasma Science and Technology, 2020, 22(8): 85603-085603. DOI: 10.1088/2058-6272/ab84ec
Citation: Bo PENG (彭勃), Guorong ZHANG (张国荣). A voltage support control strategy based on three-port flexible multi-state switch in distribution networks[J]. Plasma Science and Technology, 2020, 22(8): 85603-085603. DOI: 10.1088/2058-6272/ab84ec

A voltage support control strategy based on three-port flexible multi-state switch in distribution networks

Funds: This work was supported by the National Key R&D Program of China (No. 2017YFB0903100) and Science and Technology Projects of State Grid Corporation of China (No. 521104170043).
More Information
  • Received Date: December 22, 2019
  • Revised Date: March 23, 2020
  • Accepted Date: March 25, 2020
  • Voltage sags in power system may lead to serious problems such as the off-grid of distributed generation and electrical equipment failures. As a novel type of power electronic equipment, a flexible multi-state switch (FMSS) is capable to support the voltage during the grid faults. In this paper, a voltage control strategy to support the voltage in a distribution network is proposed by introducing three-port FMSS. The positive–negative-sequence compensation (PNSC) scheme is adopted to control the active and reactive current. This control scheme eliminates active power oscillations at the port of voltage sags and reduces coupling oscillations of other ports. Based on the characteristics of the voltage support under PNSC scheme, two voltage support strategies are proposed. A proportional-integral controller is introduced to provide the reactive power references, which eliminates the errors when estimating the grid voltage and impedance. A current limiting scheme is adopted to keep the port current in a safe range by adjusting the active and reactive power references. The voltage support strategies in two different voltage sags are simulated, and results show the feasibility and effectiveness of the proposed control strategies.
  • [1]
    Kuehn I et al 2018 IEEE Trans. Plasma Sci. 46 2647
    [2]
    Gassmann T et al 2011 Fusion Eng. Des. 86 884
    [3]
    Roshal A et al 2011 Fusion Eng. Des. 86 1450
    [4]
    Fu P 2014 Power Electron. 48 1 (in Chinese)
    [5]
    Song I et al 2013 IEEE Trans. Smart Grid 4 367
    [6]
    Wang C et al 2016 Autom. Electric Power Syst. 40 168 (in Chinese)
    [7]
    Keane A et al 2013 IEEE Trans. Power Syst. 28 1493
    [8]
    Bloemink J M and Green T C 2013 IEEE Trans. Power Deliv.28 911
    [9]
    Zhang G et al 2019 Renew. Sustain. Energy 11 025501
    [10]
    Peng B and Zhang G 2019 J. Eng. 2019 1005
    [11]
    Cao W et al 2016 Appl. Energy 164 245
    [12]
    Wang C et al 2016 Energy Proc. 103 70
    [13]
    Wang C et al 2017 Appl. Energy 189 301
    [14]
    Zhao J et al 2016 High Volt. Eng. 42 2134 (in Chinese)
    [15]
    Wang C et al 2018 Autom. Electric Power Syst. 42 13 (in Chinese)
    [16]
    Wang C et al 2015 Autom. Electric Power Syst. 39 85 (in Chinese)
    [17]
    Cao W et al 2016 Appl. Energy 165 36
    [18]
    Cong M et al 2015 IEEE Trans. Sustain. Energy 6 1131
    [19]
    Blaabjerg F et al 2006 IEEE Trans. Ind. Electron. 53 1398
    [20]
    Kabir M N et al 2014 Appl. Energy 134 290
    [21]
    Camacho A et al 2013 IEEE Trans. Ind. Electron. 60 1429
    [22]
    Castilla M et al 2014 IEEE Trans. Ind. Electron. 61 808
    [23]
    Camacho A et al 2018 IEEE Trans. Power Electron. 33 5362
    [24]
    Ji H et al 2017 Appl. Energy 208 986
    [25]
    Miret J et al 2013 IEEE Trans Power Electron. 28 5252
    [26]
    Rodriguez P et al 2007 IEEE Trans. Ind. Electron. 54 2583
    [27]
    Qi H et al 2014 Trans. China Electrotech. Soc. 29 416 (in Chinese)
    [28]
    Kim K et al 2012 IEEE Trans. Power Electron. 27 2376
  • Related Articles

    [1]Rennan B MORALES, Stéphane HEURAUX, Roland SABOT, Sébastien HACQUIN, Frédéric CLAIRET, the Tore Supra Team. Reconstruction of hollow areas in density profiles from frequency swept reflectometry[J]. Plasma Science and Technology, 2020, 22(6): 64005-064005. DOI: 10.1088/2058-6272/ab7b5a
    [2]Linghan WAN (万凌寒), Zhoujun YANG (杨州军), Ruobing ZHOU (周若冰), Xiaoming PAN (潘晓明), Chi ZHANG (张弛), Xianli XIE (谢先立), Bowen RUAN (阮博文). Design of Q-band FMCW reflectometry for electron density profile measurement on the Joint TEXT tokamak[J]. Plasma Science and Technology, 2017, 19(2): 25602-025602. DOI: 10.1088/2058-6272/19/2/025602
    [3]GAO Yu (高宇), WANG Yumin (王嵎民), ZHANG Tao (张涛), ZHANG Shoubiao (张寿彪), QU Hao (屈浩), HAN Xiang (韩翔), WEN Fei (文斐), KONG Defeng (孔德峰), HUANG Canbin (黄灿斌), CAI Jianqing (蔡剑青), SUN Youwen (孙有文), LIANG Yunfeng (梁云峰), GAO Xiang (高翔), EAST Team. Preliminary Study of the Magnetic Perturbation Effects on the Edge Density Profiles and Fluctuations Using Reflectometers on EAST[J]. Plasma Science and Technology, 2016, 18(9): 879-883. DOI: 10.1088/1009-0630/18/9/01
    [4]QU Hao (屈浩), ZHANG Tao (张涛), ZHANG Shoubiao (张寿彪), WEN Fei (文斐), WANG Yumin (王嵎民), KONG Defeng (孔德峰), HAN Xiang (韩翔), YANG Yao (杨曜), GAO Yu (高宇), HUANG Canbin (黄灿斌), CAI Jianqing (蔡剑青), GAO Xiang (高翔), the EAST team. Q-Band X-Mode Reflectometry and Density Profile Reconstruction[J]. Plasma Science and Technology, 2015, 17(12): 985-990. DOI: 10.1088/1009-0630/17/12/01
    [5]ZHANG Shoubiao(张寿彪), GAO Xiang(高翔), LING Bili(凌必利), WANG Yumin(王嵎民), ZHANG Tao(张涛), HAN Xiang(韩翔), LIU Zixi(刘子奚), BU Jingliang(布景亮), LI Jiangang(李建刚), EAST team. Density Profile and Fluctuation Measurements by Microwave Reflectometry on EAST[J]. Plasma Science and Technology, 2014, 16(4): 311-315. DOI: 10.1088/1009-0630/16/4/02
    [6]ZHANG Chongyang (张重阳), LIU Ahdi (刘阿娣), LI Hong (李弘), LI Bin (李斌), et al.. X-Mode Frequency Modulated Density Profile Reflectometer on EAST Tokamak[J]. Plasma Science and Technology, 2013, 15(9): 857-862. DOI: 10.1088/1009-0630/15/9/04
    [7]JIA Hua (贾华), LIU Fukun (刘甫坤), LIU Liang (刘亮), CHENG Min (程敏), et al.. Design and Test of an Antenna Module Mock-Up for the EAST 4.6 GHz LHCD Launcher[J]. Plasma Science and Technology, 2013, 15(8): 834-839. DOI: 10.1088/1009-0630/15/8/23
    [8]WANG Fumin (王福敏), GAN Kaifu (甘开福), GONG Xianzu (龚先祖), EAST team. Temperature Distribution and Heat Flux on the EAST Divertor Targets in H-Mode[J]. Plasma Science and Technology, 2013, 15(3): 225-229. DOI: 10.1088/1009-0630/15/3/07
    [9]YU Yiqing(虞一青), XIN Yu(辛煜), LU Wenqi(陆文琪), NING Zhaoyuan(宁兆元). Abnormal Enhancement of N2+ Emission Induced by Lower Frequencies in N2 Dual-Frequency Capacitively Coupled Plasmas[J]. Plasma Science and Technology, 2012, 14(3): 222-226. DOI: 10.1088/1009-0630/14/3/07
    [10]WANG Liang, XU Guosheng, CHANG Jiafeng, ZHANG Wei, YAN Ning, DING Siye..... Study of Scrape-Off-Layer Width in Ohmic and Lower Hybrid Wave Heated Double-Null Divertor Plasma in EAST[J]. Plasma Science and Technology, 2011, 13(4): 435-439.

Catalog

    Article views (82) PDF downloads (47) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return