Advanced Search+
Bo PENG (彭勃), Guorong ZHANG (张国荣). A voltage support control strategy based on three-port flexible multi-state switch in distribution networks[J]. Plasma Science and Technology, 2020, 22(8): 85603-085603. DOI: 10.1088/2058-6272/ab84ec
Citation: Bo PENG (彭勃), Guorong ZHANG (张国荣). A voltage support control strategy based on three-port flexible multi-state switch in distribution networks[J]. Plasma Science and Technology, 2020, 22(8): 85603-085603. DOI: 10.1088/2058-6272/ab84ec

A voltage support control strategy based on three-port flexible multi-state switch in distribution networks

Funds: This work was supported by the National Key R&D Program of China (No. 2017YFB0903100) and Science and Technology Projects of State Grid Corporation of China (No. 521104170043).
More Information
  • Received Date: December 22, 2019
  • Revised Date: March 23, 2020
  • Accepted Date: March 25, 2020
  • Voltage sags in power system may lead to serious problems such as the off-grid of distributed generation and electrical equipment failures. As a novel type of power electronic equipment, a flexible multi-state switch (FMSS) is capable to support the voltage during the grid faults. In this paper, a voltage control strategy to support the voltage in a distribution network is proposed by introducing three-port FMSS. The positive–negative-sequence compensation (PNSC) scheme is adopted to control the active and reactive current. This control scheme eliminates active power oscillations at the port of voltage sags and reduces coupling oscillations of other ports. Based on the characteristics of the voltage support under PNSC scheme, two voltage support strategies are proposed. A proportional-integral controller is introduced to provide the reactive power references, which eliminates the errors when estimating the grid voltage and impedance. A current limiting scheme is adopted to keep the port current in a safe range by adjusting the active and reactive power references. The voltage support strategies in two different voltage sags are simulated, and results show the feasibility and effectiveness of the proposed control strategies.
  • [1]
    Kuehn I et al 2018 IEEE Trans. Plasma Sci. 46 2647
    [2]
    Gassmann T et al 2011 Fusion Eng. Des. 86 884
    [3]
    Roshal A et al 2011 Fusion Eng. Des. 86 1450
    [4]
    Fu P 2014 Power Electron. 48 1 (in Chinese)
    [5]
    Song I et al 2013 IEEE Trans. Smart Grid 4 367
    [6]
    Wang C et al 2016 Autom. Electric Power Syst. 40 168 (in Chinese)
    [7]
    Keane A et al 2013 IEEE Trans. Power Syst. 28 1493
    [8]
    Bloemink J M and Green T C 2013 IEEE Trans. Power Deliv.28 911
    [9]
    Zhang G et al 2019 Renew. Sustain. Energy 11 025501
    [10]
    Peng B and Zhang G 2019 J. Eng. 2019 1005
    [11]
    Cao W et al 2016 Appl. Energy 164 245
    [12]
    Wang C et al 2016 Energy Proc. 103 70
    [13]
    Wang C et al 2017 Appl. Energy 189 301
    [14]
    Zhao J et al 2016 High Volt. Eng. 42 2134 (in Chinese)
    [15]
    Wang C et al 2018 Autom. Electric Power Syst. 42 13 (in Chinese)
    [16]
    Wang C et al 2015 Autom. Electric Power Syst. 39 85 (in Chinese)
    [17]
    Cao W et al 2016 Appl. Energy 165 36
    [18]
    Cong M et al 2015 IEEE Trans. Sustain. Energy 6 1131
    [19]
    Blaabjerg F et al 2006 IEEE Trans. Ind. Electron. 53 1398
    [20]
    Kabir M N et al 2014 Appl. Energy 134 290
    [21]
    Camacho A et al 2013 IEEE Trans. Ind. Electron. 60 1429
    [22]
    Castilla M et al 2014 IEEE Trans. Ind. Electron. 61 808
    [23]
    Camacho A et al 2018 IEEE Trans. Power Electron. 33 5362
    [24]
    Ji H et al 2017 Appl. Energy 208 986
    [25]
    Miret J et al 2013 IEEE Trans Power Electron. 28 5252
    [26]
    Rodriguez P et al 2007 IEEE Trans. Ind. Electron. 54 2583
    [27]
    Qi H et al 2014 Trans. China Electrotech. Soc. 29 416 (in Chinese)
    [28]
    Kim K et al 2012 IEEE Trans. Power Electron. 27 2376
  • Related Articles

    [1]Huan LIU (刘欢), Liang WANG (王亮), Guosheng XU (徐国盛), Fang DING (丁芳), Jianbin LIU (刘建斌), Jichan XU (许吉禅), Wei FENG (冯威), Guozhong DENG (邓国忠), Xingwei ZHENG (郑星炜), Yaowei YU (余耀伟), Hang SI (司杭), Haiqing LIU (刘海庆), Qingquan YANG (杨清泉), Zhen SUN (孙震), Houyang GUO (郭后扬). Preliminary study of divertor particle exhaust in the EAST superconducting tokamak[J]. Plasma Science and Technology, 2017, 19(9): 95101-095101. DOI: 10.1088/2058-6272/aa6f5a
    [2]Baoguo WANG (王保国), Dahuan ZHU (朱大焕), Rui DING (丁锐), Junling CHEN (陈俊凌). Thermal analysis on the EAST tungsten plasma facing components with shaping structure counteracting the misalignment issues[J]. Plasma Science and Technology, 2017, 19(2): 25603-025603. DOI: 10.1088/2058-6272/19/2/025603
    [3]Guozhong DENG (邓国忠), Liang WANG (王亮), Xiaoju LIU (刘晓菊), Yanmin DUAN (段艳敏), Jiansheng HU (胡建生), Changzheng LI (李长征), Ling ZHANG (张凌), Shaocheng LIU (刘少承), Huiqian WANG (汪惠乾), Liang CHEN (陈良), Jichan XU (许吉禅), Wei FENG (冯威), Jianbin LIU (刘建斌), Huan LIU (刘欢), Guosheng XU (徐国盛), Houyang GUO (郭后扬), Xiang GAO (高翔), the EAST team. Achieving temporary divertor plasma detachment with MARFE events by pellet injection in the EAST superconducting tokamak[J]. Plasma Science and Technology, 2017, 19(1): 15101-015101. DOI: 10.1088/1009-0630/19/1/015101
    [4]LIU Xiaolong (刘晓龙), Kazuo NAKAMURA, Tatsuya YOSHISUE, Osamu MITARAI, Makoto HASEGAWA, Kazutoshi TOKUNAGA, XUE Erbing (薛二兵), Hideki ZUSHI, Kazuaki HANADA, Akihide FUJISAWA, Hiroshi IDEI, et al.. H Loop Shaping Control for Plasma Vertical Position Instability on QUEST[J]. Plasma Science and Technology, 2013, 15(3): 295-299. DOI: 10.1088/1009-0630/15/3/21
    [5]WANG Zhongtian (王中天), WANG Long (王龙), LONG Yongxing (龙永兴), DONG Jiaqi (董家齐), HE Zhixiong (何志雄), LIU Yu (刘宇), TANG Changjian (唐昌建). Shaping Effects of the E-Fishbone in Tokamaks[J]. Plasma Science and Technology, 2013, 15(1): 12-16. DOI: 10.1088/1009-0630/15/1/03
    [6]ZHU Zhe (朱哲), ZHU Yinfeng (朱银锋), HUANG Ronglin (黄荣林), FU Peng (傅鹏), DING Yixiao(丁逸骁). Study on the Current-sharing Control System of the TF Power Supply for a Superconducting Tokamak[J]. Plasma Science and Technology, 2012, 14(10): 941-946. DOI: 10.1088/1009-0630/14/10/16
    [7]WANG Liang, XU Guosheng, CHANG Jiafeng, ZHANG Wei, YAN Ning, DING Siye..... Study of Scrape-Off-Layer Width in Ohmic and Lower Hybrid Wave Heated Double-Null Divertor Plasma in EAST[J]. Plasma Science and Technology, 2011, 13(4): 435-439.
    [8]K. HANADA, H. ZUSHI, H. IDEI, K. NAKAMURA, M. ISHIGURO, S. TASHIMA, E. I. KALINNIKOVA, M. SAKAMOTO, M. HASEGAWA, A. FUJISAWA, A. HIGASHIJIMA, S. KAWASAKI, H. NAKASHIMA, H. LIU, O. MITARAI, T. MAEKAWA. Non-inductive start up of QUEST plasma by RF power[J]. Plasma Science and Technology, 2011, 13(3): 307-311.
    [9]GAO Zhe. Analytical Theory of the Geodesic Acoustic Mode in the Small and Large Orbit Drift Width Limits and its Application in a Study of Plasma Shaping Effect[J]. Plasma Science and Technology, 2011, 13(1): 15-20.
    [10]NI Qionglin, FAN Tieshuan, ZHANG Xing, ZHANG Cheng, REN Qilong, HU Chundong. Predictive Calculation of Neutral Beam Heating Plasmas in EAST Tokamak by NUBEAM Code for Certain Parameter Ranges[J]. Plasma Science and Technology, 2010, 12(6): 661-667.

Catalog

    Article views (82) PDF downloads (47) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return