Advanced Search+
Liang HE (何梁), Jun CHEN (陈俊), Fudi WANG (王福地), Jinjia CAO (曹锦佳), Hongming ZHANG (张洪明), Jia FU (符佳), Yingying LI (李颖颖), Yichao LI (李义超), Bin BIN (宾斌), Qingjiang YU (余青江), Shunkuan WAN (万顺宽), Jin YANG (杨进), Xunyu WANG (王勋禹), Bo LYU (吕波), Xueyu GONG (龚学余). Measurement of tungsten impurity spectra with a two-crystal X-ray crystal spectrometer on EAST[J]. Plasma Science and Technology, 2020, 22(8): 84002-084002. DOI: 10.1088/2058-6272/ab84ee
Citation: Liang HE (何梁), Jun CHEN (陈俊), Fudi WANG (王福地), Jinjia CAO (曹锦佳), Hongming ZHANG (张洪明), Jia FU (符佳), Yingying LI (李颖颖), Yichao LI (李义超), Bin BIN (宾斌), Qingjiang YU (余青江), Shunkuan WAN (万顺宽), Jin YANG (杨进), Xunyu WANG (王勋禹), Bo LYU (吕波), Xueyu GONG (龚学余). Measurement of tungsten impurity spectra with a two-crystal X-ray crystal spectrometer on EAST[J]. Plasma Science and Technology, 2020, 22(8): 84002-084002. DOI: 10.1088/2058-6272/ab84ee

Measurement of tungsten impurity spectra with a two-crystal X-ray crystal spectrometer on EAST

Funds: This work is partially supported by the National Magnetic Confinement Fusion Science Program of China (Nos. 2017YFE0301300 and 2018YFE0301100), the Key Program of Research and Development of the Hefei Science Center (No. 2017HSC- KPRD002), National Natural Science Foundation of China (Nos. 11805231 and 11705151), the ASIPP Science and Research Grant (No. DSJJ-17-03), the Anhui Provincial Natural Science Foundation (Nos. 1808085QA14 and 1908085J01), the Instrument Developing Project of the Chi- nese Academy of Sciences (No. YJKYYQ20180013), the Collaborative Innovation Program of Hefei Science Center, CAS (No. 2019HSC-CIP005), the Nature Science Foundation of Hunan Province (2017JJ3268), the Hunan Nuclear Fusion International Science and Technology Innovation Coopera- tion Base (No. 2018WK4009), and the Key Laboratory of Magnetic Confinement Nuclear Fusion Research in Hengyang (No. 2018KJ108).
More Information
  • Received Date: January 08, 2020
  • Revised Date: March 24, 2020
  • Accepted Date: March 26, 2020
  • Spectral measurement of tungsten (W) impurity is essential to study impurity transport. Therefore, an X-ray crystal spectrometer (XCS) on EAST was used to measure the line spectra from highly ionized W ions. On EAST, both poloidal XCS and tangential XCS have been developed to measure the plasma temperature as well as the rotation velocity. Recently, He-like and H-like argon spectra have also been obtained using a two-crystal setup. W lines are identified in this study. Through a careful analysis, the W lines of 3.9336, 3.9321, and 3.664 Å are found to be diffracted by He-like or H-like crystals. The lines are confirmed with the NIST database. We also calculated the ion temperature with Doppler broadening of these lines. The ion temperature from the W lines is entirely consistent with that from Ar line spectra. The measurement of these W line spectra could be used to study W impurity transport in future work.
  • [1]
    Shen Y C et al 2019 Phys. Plasmas 26 032507
    [2]
    Pütterich T et al 2012 Tungsten screening and impurity control in JET Proc. 24th IAEA Fusion Energy Conf. (San Diego USA) (MPG)
    [3]
    Casali L et al 2014 Transport analysis of high radiation and high density plasmas at ASDEX upgrade Talk presented at 78. DPG-Jahrestagung und Frühjahrstagung der Sektion AMOP 2014 (Berlin, Germany) (MPG)
    [4]
    Seon C R et al 2017 Rev. Sci. Instrum. 88 083511
    [5]
    Lipschultz B et al 2012 Nucl. Fusion 52 123002
    [6]
    Neu R et al 2009 Phys. Scr. 138 014038
    [7]
    Van Rooij G J et al 2013 J. Nucl. Mater. 438 S42
    [8]
    Seon C R et al 2016 Fusion Eng. Des. 109–111 656
    [9]
    Yao D M et al 2016 Phys. Scr. 167 014003
    [10]
    Shen Y C et al 2013 Fusion Eng. Des. 88 3072
    [11]
    Shen Y et al 2013 Nucl. Instrum. Methods Phys. Res. A 700 86
    [12]
    Zhang L et al 2019 Nucl. Instrum. Methods Phys. Res. A 916 169
    [13]
    Zhang L et al 2015 Rev. Sci. Instrum. 86 123509
    [14]
    Lu B et al 2012 Rev. Sci. Instrum. 83 10E130
    [15]
    Lyu B et al 2014 Rev. Sci. Instrum. 85 11E406
    [16]
    Wang F D et al 2016 Rev. Sci. Instrum. 87 11E342
    [17]
    Wang F D et al 2011 J. Korean Phys. Soc. 59 2734
    [18]
    Lyu B et al 2016 Rev. Sci. Instrum. 87 11E326
    [19]
    Lyu B et al 2018 Rev. Sci. Instrum. 89 10F112
    [20]
    Hu R J et al 2018 Rev. Sci. Instrum. 89 10F110
    [21]
    Yang X S et al 2018 Plasma Sci. Technol. 20 124001
    [22]
    Tragin N et al 1988 Phys. Scr. 37 72
    [23]
    Sertoli M 2010 Local effects of ECRH on argon transport at ASDEX upgrade PhD Thesis Ludwig-Maximilians—Universität München
    [24]
    Clementson J et al 2010 Phys. Scr. 81 015301
    [25]
    Kramida A et al NIST Atomic Spectra Database (version 5.7.1) Available https://doi.org/10.18434/T4W30F [Accessed: 6 March 2020]. National Institute of Standards and Technology
  • Related Articles

    [1]ZHANG Junmin (张俊民), LU Chunrong (卢春荣), GUAN Yonggang (关永刚), LIU Weidong (刘卫东). Calculation of Nozzle Ablation During Arcing Period in an SF6 Auto-Expansion Circuit Breaker[J]. Plasma Science and Technology, 2016, 18(5): 506-511. DOI: 10.1088/1009-0630/18/5/11
    [2]ZHONG Jianying (钟建英), GUO Yujing (郭煜敬), ZHANG Hao (张豪). Pressure and Arc Voltage Measurement in a 252 kV SF6 Puffer Circuit Breaker[J]. Plasma Science and Technology, 2016, 18(5): 490-493. DOI: 10.1088/1009-0630/18/5/08
    [3]ZHANG Junmin (张俊民 ), CHI Chengbin (迟程缤), GUAN Yonggang (关永刚), LIU Weidong (刘卫东), WU Junhui (吴军辉). Simulation of Arc Rotation and Its Effects on Pressure of Expansion Volume in an Auto-Expansion SF6 Circuit Breaker[J]. Plasma Science and Technology, 2016, 18(3): 287-291. DOI: 10.1088/1009-0630/18/3/12
    [4]LIN Xin (林莘), WANG Feiming (王飞鸣), XU Jianyuan (徐建源), XIA Yalong (夏亚龙), LIU Weidong (刘卫东). Study on the Mathematical Model of Dielectric Recovery Characteristics in High Voltage SF6 Circuit Breaker[J]. Plasma Science and Technology, 2016, 18(3): 223-229. DOI: 10.1088/1009-0630/18/3/02
    [5]A. K. FEROUANI, M. LEMERINI, L. MERAD, M. HOUALEF. Numerical Modelling Point-to-Plane of Negative Corona Discharge in N2 Under Non-Uniform Electric Field[J]. Plasma Science and Technology, 2015, 17(6): 469-474. DOI: 10.1088/1009-0630/17/6/06
    [6]WEI Hao (魏浩), SUN Fengju (孙凤举), YIN Jiahui (尹佳辉), HU Yixiang (呼义翔), LIANG Tianxue (梁天学), CONG Peitian (丛培天), QIU Aici (邱爱慈). Numerical Simulation of Azimuthal Uniformity of Injection Currents in Single-Point-Feed Induction Voltage Adders[J]. Plasma Science and Technology, 2015, 17(3): 235-240. DOI: 10.1088/1009-0630/17/3/11
    [7]CHENG Xian (程显), DUAN Xiongying (段雄英), LIAO Minfu (廖敏夫), et al.. The Voltage Distribution Characteristics of a Hybrid Circuit Breaker During High Current Interruption[J]. Plasma Science and Technology, 2013, 15(8): 800-806. DOI: 10.1088/1009-0630/15/8/16
    [8]Vahid ABBASI, Ahmad GHOLAMI, Kaveh NIAYESH. The Effects of SF6-Cu Mixture on the Arc Characteristics in a Medium Voltage Puffer Gas Circuit Breaker due to Variation of Thermodynamic Properties and Transport Coefficients[J]. Plasma Science and Technology, 2013, 15(6): 586-592. DOI: 10.1088/1009-0630/15/6/18
    [9]YIN Mingli (阴明利), TIAN Canxin (田灿鑫), WANG Zesong (王泽松), FU Dejun (付德君). Influences of Bias Voltage and Target Current on Structure, Microhardness and Friction Coefficient of Multilayered TiAlN/ CrN Coatings Synthesized by Cathodic Arc Plasma Deposition[J]. Plasma Science and Technology, 2013, 15(6): 582-585. DOI: 10.1088/1009-0630/15/6/17
    [10]YANG Fei(杨飞), MA Ruiguang ( 马瑞光), WU Yi( 吴翊), SUN Hao( 孙昊), NIU Chunping( 纽春萍), RONG Mingzhe(荣命哲). Numerical study on arc plasma behavior during arc commutation process in direct current circuit breaker[J]. Plasma Science and Technology, 2012, 14(2): 167-171. DOI: 10.1088/1009-0630/14/2/16
  • Cited by

    Periodical cited type(2)

    1. Yang, H., Zhang, J., Shen, Z. Water-based metamaterial absorber for temperature modulation. Physica Scripta, 2024, 99(10): 105563. DOI:10.1088/1402-4896/ad7b8a
    2. Liu, Y.L., Chen, W.C., Guo, B. Magneto-optical effects on the properties of the photonic spin Hall effect owing to the defect mode in photonic crystals with plasma. AIP Advances, 2019, 9(7): 075111. DOI:10.1063/1.5094664

    Other cited types(0)

Catalog

    Article views (168) PDF downloads (225) Cited by(2)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return