Advanced Search+
Reza SAFARI, Farshad SOHBATZADEH. Effect of methane content and the oscillating electric field between electrodes on atmospheric Ar/methane plasma jet and DLC coating deposition[J]. Plasma Science and Technology, 2020, 22(8): 85401-085401. DOI: 10.1088/2058-6272/ab8550
Citation: Reza SAFARI, Farshad SOHBATZADEH. Effect of methane content and the oscillating electric field between electrodes on atmospheric Ar/methane plasma jet and DLC coating deposition[J]. Plasma Science and Technology, 2020, 22(8): 85401-085401. DOI: 10.1088/2058-6272/ab8550

Effect of methane content and the oscillating electric field between electrodes on atmospheric Ar/methane plasma jet and DLC coating deposition

More Information
  • Received Date: January 05, 2020
  • Revised Date: March 24, 2020
  • Accepted Date: March 30, 2020
  • In this work, the effects of the methane gas flow and the internal oscillating electric field between electrodes on radio-frequency (RF) atmospheric pressure argon/methane plasma jet and process of diamond-like carbon (DLC) film deposition have been investigated. Properties of RF atmospheric Ar/methane plasma jet such as active species density, length, electron temperature, appearance and ionization process of argon/methane plasma jet are changed due to the changing of methane flow content and electric field vector and its gradient. With increasing methane flow, the formation of C2 hydrocarbon and CH band content is decreased because injected electrical energy to a mixture of Ar/methane gases is insufficient to stabilize the ionization process of methane gas and the electrical-chemical reaction rate is decreased. With shortening the gas gap between two electrodes, electric field strength and its gradient are increased leading to more energy injection to the electron. Electrical-chemical reactions are strengthened leading to increasing the CH band content. These phenomena introduce the Ar/methane plasma jet in different modes causing to deposit the DLC film with different structures and properties. With using quartz glass and alumina ceramic as dielectric barriers tubes, RF atmospheric pressure Ar/ methane plasma jet has been used to deposit DLC coating in different modes. Increasing methane content and shortening the gas gap leads to decreasing sp3 bonded content and the quality of the deposited film.
  • [1]
    Penkov O V et al 2015 J. Coat. Technol. Res. 12 225
    [2]
    Winter J, Brandenburg R and Weltmann K D 2015 Plasma Sources Sci. Technol. 24 064001
    [3]
    Surowsky B, Schlüter O and Knorr D 2015 Food Eng. Rev.7 82
    [4]
    Nishime T M C et al 2017 Surf. Coat. Technol. 312 19
    [5]
    Lu X P and Ostrikov K 2018 Appl. Phys. Rev. 5 031102
    [6]
    Lu X et al 2016 Phys. Rep. 630 1
    [7]
    Schäfer J et al 2018 Eur. Phys. J. D 72 90
    [8]
    Lu X et al 2012 Plasma Sources Sci. Technol. 21 034005
    [9]
    Al Mahmud K A H et al 2015 Crit. Rev. Solid State Mater. Sci.40 90
    [10]
    Asl A M et al 2015 Superlattices Microstruct. 81 64
    [11]
    Dalibón E L et al 2017 Surf. Coat. Technol. 312 101
    [12]
    Shi W L et al 2017 Appl. Mech. Mater. 864 14
    [13]
    Lee J H et al 2019 Appl. Surf. Sci. 478 802
    [14]
    Sohbatzadeh F et al 2016 Superlattices Microstruct. 89 231
    [15]
    Rincón R et al 2016 J. Appl. Phys. 119 223303
    [16]
    Sohbatzadeh F et al 2016 Appl. Phys. A 122 886
    [17]
    Kikuchi Y et al 2017 Vacuum 136 196
    [18]
    Sohbatzadeh F et al 2019 Diam. Relat. Mater. 91 34
    [19]
    Sohbatzadeh F, Eshghabadi M and Mohsenpour T 2018 Nanotechnology 29 265603
    [20]
    Sainio S et al 2016 J. Phys. Chem. C 120 8298
    [21]
    Caro M A et al 2018 Phys. Rev. Lett. 120 166101
    [22]
    de Moura Silva A et al 2019 J. Oral Biol. Craniofac. Res.9 201
    [23]
    Yao S H et al 2018 Appl. Mech. Mater. 883 43
    [24]
    Bordin D et al 2018 Dent. Mater. 34 e128
    [25]
    Raizer Y P 1997 Gas Discharge Physics (Berlin: Springer)
    [26]
    Roth J R 2001 Industrial Plasma Engineering: Volume 2:Applications to Nonthermal Plasma Processing (Boca Raton, FL: CRC Press)
    [27]
    Hu M and Chen J R 2007 Plasma Sci. Technol. 9 269
    [28]
    Scapinello M, Delikonstantis E and Stefanidis G D 2017 Chem.Eng. Process. 117 120
    [29]
    Ozkan A et al 2015 J. CO 2 Util. 9 74
    [30]
    Heintze M, Magureanu M and Kettlitz M 2002 J. Appl. Phys.92 7022
    [31]
    Lee D H et al 2013 Plasma Chem. Plasma Process. 33 249
    [32]
    Gordillo-Vázquez F J and Albella J M 2003 Plasma Sources Sci. Technol. 13 50
    [33]
    Nayak G et al 2017 Plasma Sources Sci. Technol. 26 035001
    [34]
    Jo S et al 2013 Phys. Plasmas 20 123507
    [35]
    Zhang Y et al 2013 Fuel 109 350
    [36]
    Luo Y L et al 2017 Appl. Therm. Eng. 115 1330
    [37]
    Zigan L 2018 Energies 11 1361
    [38]
    Moisan M and Pelletier J 2012 Physics of Collisional Plasmas:Introduction to High-Frequency Discharges (Berlin: Springer)
    [39]
    Bashir M et al 2014 Phys. Lett. A 378 2395
    [40]
    Bora B et al 2017 Plasma Med. 7 417
    [41]
    Fatima S S et al 2017 Contrib. Plasma Phys. 57 387
    [42]
    Golant V E, Zhilinsky A P and Sakharov I E 1980 Fundamentals of Plasma (New York: Wiley)
    [43]
    Sun W W et al 2019 Results Phys. 14 102480
    [44]
    Luo Y et al 2015 Appl. Mech. Mater. 723 502
  • Related Articles

    [1]Changle LIU, Lei LI, Yanzi HE, Peng ZHANG, Yu ZHOU, Jun SONG, Songtao WU. An innovative approach to effective breeding blanket design for future fusion reactors[J]. Plasma Science and Technology, 2024, 26(10): 105601. DOI: 10.1088/2058-6272/ad5a66
    [2]Zhongtian WANG (王中天), Huidong LI (李会东), Xueke WU (吴雪科). Loss-cone instabilities for compact fusion reactor and field-reversed configuration[J]. Plasma Science and Technology, 2019, 21(2): 25101-025101. DOI: 10.1088/2058-6272/aaead9
    [3]Dongye ZHAO (赵栋烨), Cong LI (李聪), Yong WANG (王勇), Zhiwei WANG (王志伟), Liang GAO (高亮), Zhenhua HU (胡振华), Jing WU (吴婧), Guang-Nan LUO (罗广南), Hongbin DING (丁洪斌). Temporal and spatial dynamics of optical emission from laser ablation of the first wall materials of fusion device[J]. Plasma Science and Technology, 2018, 20(1): 14022-014022. DOI: 10.1088/2058-6272/aa96a0
    [4]Shanwen ZHANG (张善文), Yuntao SONG (宋云涛), Linlin TANG (汤淋淋), Zhongwei WANG (王忠伟), Xiang JI (戢翔), Shuangsong DU (杜双松). Electromagnetic–thermal–structural coupling analysis of the ITER edge localized mode coil with fiexible supports[J]. Plasma Science and Technology, 2017, 19(5): 55601-055601. DOI: 10.1088/2058-6272/aa57f4
    [5]Hantian ZHANG (张含天), Tianwei LI (厉天威), Bing LUO (罗兵), Yi WU (吴翊), Fei YANG (杨飞), Hao SUN (孙昊), Li TANG (唐力). Influence of the gassing materials on the dielectric properties of air[J]. Plasma Science and Technology, 2017, 19(5): 55504-055504. DOI: 10.1088/2058-6272/aa57f5
    [6]ZHANG Xiujie (张秀杰), PAN Chuanjie (潘传杰), XU Zengyu (许增裕). MHD Stability Analysis and Flow Controls of Liquid Metal Free Surface Film Flows as Fusion Reactor PFCs[J]. Plasma Science and Technology, 2016, 18(12): 1204-1214. DOI: 10.1088/1009-0630/18/12/11
    [7]WANG Shijia (王时佳), WANG Shaojie (王少杰). Effect of Fuelling Depth on the Fusion Performance and Particle Confinement of a Fusion Reactor[J]. Plasma Science and Technology, 2016, 18(12): 1155-1161. DOI: 10.1088/1009-0630/18/12/03
    [8]YANG Yu (杨愚), S. MARUYAMA, A. FOSSEN, F. VILLERS, G. KISS, ZHANG Bo (张博), LI Bo (李波), JIANG Tao (江涛), HUANG Xiangmei (黄向玫). Nuclear Safety Functions of ITER Gas Injection System Instrumentation and Control and the Concept Design[J]. Plasma Science and Technology, 2016, 18(8): 875-878. DOI: 10.1088/1009-0630/18/8/15
    [9]ZHAO Dongye(赵栋烨), FARID Nazar(纳扎), HAI Ran(海然), WU Ding(吴鼎), DING Hongbin(丁洪斌). Diagnostics of First Wall Materials in a Magnetically Confined Fusion Device by Polarization-Resolved Laser-Induced Breakdown Spectroscopy[J]. Plasma Science and Technology, 2014, 16(2): 149-154. DOI: 10.1088/1009-0630/16/2/11
    [10]HAO Junchuan (郝俊川), SONG Yuntao (宋云涛), WANG Xiaoyu (王晓宇), K. IOKI, DU Shuangsong (杜双松), JI Xiang (戢翔), FENG Changle (冯昌乐), XU Yang (徐扬). Static Structural Analysis for a Neutron Shielding Block in ITER[J]. Plasma Science and Technology, 2013, 15(2): 142-147. DOI: 10.1088/1009-0630/15/2/13

Catalog

    Article views (119) PDF downloads (42) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return