Advanced Search+
Pengpeng MA (麻鹏鹏), Maogen SU (苏茂根), Shiquan CAO (曹世权), Kaiping WANG (王凯平), Weiwei HAN (韩伟伟), Duixiong SUN (孙对兄), Qi MIN (敏琦), Chenzhong DONG (董晨钟). Influence of heating effect in Thomson scattering diagnosis of laser-produced plasmas in air[J]. Plasma Science and Technology, 2020, 22(8): 85502-085502. DOI: 10.1088/2058-6272/ab869b
Citation: Pengpeng MA (麻鹏鹏), Maogen SU (苏茂根), Shiquan CAO (曹世权), Kaiping WANG (王凯平), Weiwei HAN (韩伟伟), Duixiong SUN (孙对兄), Qi MIN (敏琦), Chenzhong DONG (董晨钟). Influence of heating effect in Thomson scattering diagnosis of laser-produced plasmas in air[J]. Plasma Science and Technology, 2020, 22(8): 85502-085502. DOI: 10.1088/2058-6272/ab869b

Influence of heating effect in Thomson scattering diagnosis of laser-produced plasmas in air

Funds: This work is supported by the National Key Research and Development Program of China (No. 2017YFA0402300), National Natural Science Foundation of China (Nos. 11874051, 11564037, 61741513, 11904293), and the Special Fund Project for Guiding Scientific and Technological Inno- vation of Gansu Province (No. 2019zx-10).
More Information
  • Received Date: January 17, 2020
  • Revised Date: March 31, 2020
  • Accepted Date: April 02, 2020
  • A state diagnosis of laser-produced plasma in air generated by a 1064 nm pulse laser was investigated by the Thomson scattering (TS) method. The evolutions of the electron temperature and electron density were obtained as a function of the time delay which ranged from 300–3200 ns. The heating effect produced by the 532 nm probe beam with different energies on the air plasma at different interaction times was further studied using a time-resolved optical emission spectroscopy technique. The influence of the probe beam on the electron density was found to be negligible, whereas its influence on electron temperature is evident. In addition, the heating effect of the probe beam on the plasma strongly depends on the energy of the probe beam, and gradually weakens with increasing time delay. Our results are helpful for further understanding the TS method and its application in plasma diagnostics.
  • [1]
    Radziemski L J 2002 Spectrochim. Acta Part B 57 1109
    [2]
    May-Smith T C et al 2008 Appl. Opt. 47 1767
    [3]
    Ohashi H et al 2014 J. Appl. Phys. 115 033302
    [4]
    Zhao H Y et al 2014 Rev. Sci. Instrum. 85 02B910
    [5]
    Hough P et al 2012 Meas. Sci. Technol. 23 125204
    [6]
    Pakhal H R, Lucht R P and Laurendeau N M 2008 Appl. Phys.B 90 15
    [7]
    Su M G et al 2016 Phys. Plasmas 23 033302
    [8]
    Hendron J M et al 1997 J. Appl. Phys. 81 2131
    [9]
    Cao S Q et al 2018 Phys. Plasmas 25 063302
    [10]
    Evans D E and Katzenstein J 1969 Rep. Prog. Phys. 32 207
    [11]
    Rozmus W et al 2000 Astrophys. J. Suppl. Ser. 127 459
    [12]
    Mendys A et al 2014 Spectrochim. Acta Part B 96 61
    [13]
    Peacock N J et al 1969 Nature 224 488
    [14]
    Wang Y et al 2017 Plasma Sci. Technol. 19 115403
    [15]
    Glenzer S H et al 1999 Phys. Plasmas 6 2117
    [16]
    Delserieys A et al 2008 Appl. Phys. Lett. 92 011502
    [17]
    Delserieys A et al 2009 J. Appl. Phys. 106 083304
    [18]
    Nedanovska E et al 2011 Appl. Phys. Lett. 99 261504
    [19]
    Nedanovska E et al 2012 Laser Part. Beams 30 259
    [20]
    Dzierżȩga K et al 2010 J. Phys.: Conf. Ser. 227 012029
    [21]
    Mendys A et al 2011 Spectrochim. Acta Part B 66 691
    [22]
    Zhang H T et al 2019 Spectrochim. Acta Part B 157 6
    [23]
    Murphy A B, Aubreton J and Elchinger M F 2003 AIP Conf.Proc. 669 757
    [24]
    Murphy A B 2004 Phys. Rev. E 69 016408
    [25]
    Dzierżęga K, Mendys A and Pokrzywka B 2014 Spectrochim.Acta Part B 98 76
  • Related Articles

    [1]Fengdong JIA (贾凤东), Yong WU (吴勇), Qi MIN (敏琦), Maogen SU (苏茂根), Keigo TAKEDA, Kenji ISHIKAWA, Hiroki KONDO, Makoto SEKINE, Masaru HORI, Zhiping ZHONG (钟志萍). Characterization of a microsecond pulsed non-equilibrium atmospheric pressure Ar plasma using laser scattering and optical emission spectroscopy[J]. Plasma Science and Technology, 2020, 22(6): 65404-065404. DOI: 10.1088/2058-6272/ab84e2
    [2]Zichen HE, Cary SMITH, Zhili ZHANG, Theodore M BIEWER, Naibo JIANG, Paul S HSU, Sukesh ROY. Pulse-burst laser-based 10 kHz Thomson scattering measurements[J]. Plasma Science and Technology, 2019, 21(10): 105603. DOI: 10.1088/2058-6272/ab2e30
    [3]Jingjun ZHOU (周靖钧), Li GAO (高丽), Yinan ZHOU (周乙楠), Jiefeng HUANG (黄杰锋), Ge ZHUANG (庄革). Design and development of a synchronized operation control system for Thomson scattering diagnostic on J-TEXT[J]. Plasma Science and Technology, 2018, 20(8): 84001-084001. DOI: 10.1088/2058-6272/aabd73
    [4]Yong WANG (王勇), Cong LI (李聪), Jielin SHI (石劼霖), Xingwei WU (吴兴伟), Hongbin DING (丁洪斌). Measurement of electron density and electron temperature of a cascaded arc plasma using laser Thomson scattering compared to an optical emission spectroscopic approach[J]. Plasma Science and Technology, 2017, 19(11): 115403. DOI: 10.1088/2058-6272/aa861d
    [5]LAN Hui (兰慧), WANG Xinbing (王新兵), ZUO Duluo (左都罗). Time-Resolved Optical Emission Spectroscopy Diagnosis of CO2 Laser-Produced SnO2 Plasma[J]. Plasma Science and Technology, 2016, 18(9): 902-906. DOI: 10.1088/1009-0630/18/9/05
    [6]SHAO Chunqiang(邵春强), ZHAO Junyu(赵君煜), ZANG Qing(臧庆), HAN Xiaofeng(韩效锋), XI Xiaoqi(席晓琦), YANG Jianhua(杨建华), CHEN Hui(陈慧), HU Ailan(胡爱兰). Analysis and Performance of the Thomson Scattering Diagnostics on HT-7 Tokamak Based on I-EMCCD[J]. Plasma Science and Technology, 2014, 16(8): 721-725. DOI: 10.1088/1009-0630/16/8/01
    [7]ZHANG Xiaoding (张小丁), ZHANG Jiyan (张继彦), YANG Guohong (杨国洪), et al.. A High-Efficiency X-Ray Crystal Spectrometer for X-Ray Thomson Scattering[J]. Plasma Science and Technology, 2013, 15(8): 755-759. DOI: 10.1088/1009-0630/15/8/07
    [8]Takashi MINAMI, Shohei ARAI, Naoki KENMOCH, Hiroaki YASHIRO, Chihiro TAKAHASHI, Shinji KOBAYASHI, Tohru MIZUUCHI, Shinsuke OHSHIMA, Satoshi YAMAMOTO, Hiroyuki OKADA, Kazunobu NAGASAKI, et al. Present Status of the Nd:YAG Thomson Scattering System Development for Time Evolution Measurement of Plasma Profile on Heliotron J[J]. Plasma Science and Technology, 2013, 15(3): 240-243. DOI: 10.1088/1009-0630/15/3/10
    [9]HU Guangyue (胡广月), ZHANG Xiaoding (张小丁), ZHENG Jian (郑坚), LEI An-le (雷安乐), SHEN Baifei (沈百飞), XU Zhizhan, et al. Demonstration of X-ray Thomson Scattering on Shenguang-Ⅱ Laser Facility[J]. Plasma Science and Technology, 2012, 14(10): 864-870. DOI: 10.1088/1009-0630/14/10/02
    [10]Kazumichi NARIHARA, Hiroshi HAYASHI. Asphericalizing the Light Collection Mirror for the 200-Point Thomson Scattering Diagnostic Installed on the Large Helical Device[J]. Plasma Science and Technology, 2011, 13(4): 415-419.
  • Cited by

    Periodical cited type(2)

    1. Jiang, L., Chen, Y., Mao, C. et al. Performance optimization of ammonium dinitramide-based liquid propellant in pulsed laser ablation micro-propulsion using LIBS. Plasma Science and Technology, 2025, 27(1): 015503. DOI:10.1088/2058-6272/ad92f8
    2. Li, B., Chen, W., Bian, S. et al. Recognition of ethylene plasma image based on dual residual with attention mechanism network. Rendiconti Lincei, 2024, 35(2): 471-480. DOI:10.1007/s12210-024-01241-0

    Other cited types(0)

Catalog

    Article views (178) PDF downloads (74) Cited by(2)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return