Advanced Search+
Xingyuan XU (徐行远), Yingfeng XU (徐颖峰), Xiaodong ZHANG (张晓东), Youjun HU (胡友俊), Lei YE (叶磊), Xiaotao XIAO (肖小涛). Simulations of first-orbit losses of neutral beam injection (NBI) fast ions on EAST[J]. Plasma Science and Technology, 2020, 22(8): 85101-085101. DOI: 10.1088/2058-6272/ab8973
Citation: Xingyuan XU (徐行远), Yingfeng XU (徐颖峰), Xiaodong ZHANG (张晓东), Youjun HU (胡友俊), Lei YE (叶磊), Xiaotao XIAO (肖小涛). Simulations of first-orbit losses of neutral beam injection (NBI) fast ions on EAST[J]. Plasma Science and Technology, 2020, 22(8): 85101-085101. DOI: 10.1088/2058-6272/ab8973

Simulations of first-orbit losses of neutral beam injection (NBI) fast ions on EAST

Funds: This work was supported by National Natural Science Foundation of China (No. 11775265).
More Information
  • Received Date: February 13, 2020
  • Revised Date: April 10, 2020
  • Accepted Date: April 14, 2020
  • Simulations of first-orbit losses of neutral beam injection (NBI) fast ions in the EAST tokamak have been studied in detail by using the orbit-following code GYCAVA and the NBI code TGCO. Beam ion losses with the wall boundary are smaller than those with the last closed flux surface boundary. In contrast to heat loads on the wall without radio frequency wave (RFW) antennas, heat loads on the wall with RFW antennas are distributed more locally near the RFW antennas. The direction of the toroidal magnetic field dramatically affects the final positions of lost fast ions, which is related to the magnetic drift. The numerical results on heat loads of beam ions corresponding to different toroidal magnetic fields are qualitatively consistent with the experimental results. Beam ion losses increase with the beam energy for the co-current NBIs and the counter-perpendicular NBI. We have studied the behavior of fast ions produced by a small section neutral beam (beamlet) by using the numerical tool NBIT. The distributions of the loss fraction of beamlet fast ions peaked near the edge of the beam section for the counter-current NBIs, and they are related to the injection angle. This indicates that the first-orbit losses can be reduced by changing the shape of beam cross section.
  • [1]
    Pace D C et al 2016 Fusion Eng. Des. 112 14
    [2]
    Hu C D et al 2015 Plasma Sci. Technol. 17 817
    [3]
    Wang J F, Wu B and Hu C D 2010 Plasma Sci. Technol.12 289
    [4]
    Chankin A V and Mccracken G M 1993 Nucl. Fusion 33 1459
    [5]
    Miyamoto K 1996 Nucl. Fusion 36 927
    [6]
    Wu G J and Zhang X D 2012 Plasma Sci. Technol. 14 789
    [7]
    Wu G J et al 2013 Phys. Plasmas 20 102508
    [8]
    White R B et al 1983 Phys. Fluids 26 2958
    [9]
    Pankin A et al 2004 Comput. Phys. Commun. 159 157
    [10]
    Xu Y F et al 2011 Phys. Plasmas 18 042505
    [11]
    Xu Y F et al 2019 Comput. Phys. Commun. 244 40
    [12]
    Asunta O et al 2015 Comput. Phys. Commun. 188 33
    [13]
    Challis C D et al 1989 Nucl. Fusion 29 563
    [14]
    Lao L L et al 1985 Nucl. Fusion 25 1611
    [15]
    Xu Y F et al 2019 Comput. Phys. Comm. 244 40
    [16]
    Mou M L et al 2014 Acta Phys. Sin. 63 165201 (in Chinese)
    [17]
    Ding B J et al 2011 Phys. Plasmas 18 082510
    [18]
    Zhang X J et al 2011 Plasma Sci. Technol. 13 172
    [19]
    Gao X et al 2018 Phys. Lett. A 382 1242
    [20]
    Wu B et al 2016 Plasma Phys. Controlled Fusion 59 025004
    [21]
    Jin Z 2017 Preliminary study of fast ion loss diagnostic (FILD) on EAST Master’s thesis University of Science and Technology of China (in Chinese)
  • Related Articles

    [1]Kunihiro OGAWA, Mitsutaka ISOBE, Takeo NISHITANI, Sadayoshi MURAKAMI, Ryosuke SEKI, Hideo NUGA, Neng PU, Masaki OSAKABE, LHD Experiment Group. Study of first orbit losses of 1 MeV tritons using the Lorentz orbit code in the LHD[J]. Plasma Science and Technology, 2019, 21(2): 25102-025102. DOI: 10.1088/2058-6272/aaeba8
    [2]Chundong HU (胡纯栋), Yongjian XU (许永建), Yuanlai XIE (谢远来), Yahong XIE (谢亚红), Lizhen LIANG (梁立振), Caichao JIANG (蒋才超), Sheng LIU (刘胜), Jianglong WEI (韦江龙), Peng SHENG (盛鹏), Zhimin LIU (刘智民), Ling TAO (陶玲), the NBI Team. Thermal analysis of EAST neutral beam injectors for long-pulse beam operation[J]. Plasma Science and Technology, 2018, 20(4): 45602-045602. DOI: 10.1088/2058-6272/aaa4f0
    [3]HU Chundong (胡纯栋), CHEN Yu (陈宇), XU Yongjian (许永建), YU Ling (于玲), LI Xiang (栗翔), ZHANG Weitang (张为堂), NBI Group. Analysis of the Pipe Heat Loss of the Water Flow Calorimetry System in EAST Neutral Beam Injector[J]. Plasma Science and Technology, 2016, 18(11): 1139-1142. DOI: 10.1088/1009-0630/18/11/13
    [4]HU Chundong (胡纯栋) for the NBI team. Achievement of 100 s Long Pulse Neutral Beam Extraction in EAST Neutral Beam Injector[J]. Plasma Science and Technology, 2013, 15(3): 201-203. DOI: 10.1088/1009-0630/15/3/01
    [5]HU Chundong (胡纯栋) for the NBI team. Preliminary Results of Ion Beam Extraction Tests on EAST Neutral Beam Injector[J]. Plasma Science and Technology, 2012, 14(10): 871-873. DOI: 10.1088/1009-0630/14/10/03
    [6]WU Guojiang (吴国将), ZHANG Xiaodong (张晓东). Calculations of the Ion Orbit Loss Region at the Edge of EAST[J]. Plasma Science and Technology, 2012, 14(9): 789-793. DOI: 10.1088/1009-0630/14/9/03
    [7]HU Chundong(胡纯栋), NBI Team. Conceptual Design of Neutral Beam Injection System for EAST[J]. Plasma Science and Technology, 2012, 14(6): 567-572. DOI: 10.1088/1009-0630/14/6/30
    [8]SHI Qilin (施齐林), HU Chundong (胡纯栋), SHENG Peng (盛鹏), SONG Shihua (宋士花). Design of Control Server Application Software for Neutral Beam Injection System[J]. Plasma Science and Technology, 2012, 14(4): 343-346. DOI: 10.1088/1009-0630/14/4/14
    [9]LI Jibo(李吉波), DING Siye(丁斯晔), WU Bin(吴斌), HU Chundong(胡纯栋). Simulations of Neutral Beam Ion Ripple Loss on EAST[J]. Plasma Science and Technology, 2012, 14(1): 78-82. DOI: 10.1088/1009-0630/14/1/17
    [10]HU Chundong (胡纯栋), LIANG Lizhen (梁立振), XIE Yuanlai (谢远来), WEI Jianglong (韦江龙), XIE Yahong (谢亚红), LI Jun (李军), LIU Zhimin (刘智民), LIU Sheng (刘胜), JIANG Caichago (蒋才超), SHENG Peng (盛鹏), XU Yongjian (许永建). Design of Neutral Beam-Line of EAST[J]. Plasma Science and Technology, 2011, 13(5): 541-545.
  • Cited by

    Periodical cited type(6)

    1. Han, Z., Li, Q., Li, J. et al. Phase field model for electric-thermal coupled discharge breakdown of polyimide nanocomposites under high frequency electrical stress. Plasma Science and Technology, 2024, 26(2): 025505. DOI:10.1088/2058-6272/ad0d49
    2. Li, Z., Li, Q., Han, Y. et al. Suppressing Charge Accumulation and Enhancing Interface Insulation for PI/EP Composites by Fabricating Al2O3 Coating. IEEE Transactions on Dielectrics and Electrical Insulation, 2024, 31(6): 3193-3201. DOI:10.1109/TDEI.2024.3418390
    3. Li, Z., Xie, Z., Han, Y. et al. Impact of nano-Al2O3 coating on the dielectric properties and High-Frequency surface electrical strength of the polyimide films. Applied Surface Science, 2023. DOI:10.1016/j.apsusc.2023.157666
    4. Yan, J., Liang, G., Lian, H. et al. Improving the surface flashover performance of epoxy resin by plasma treatment: A comparison of fluorination and silicon deposition under different modes. Plasma Science and Technology, 2021, 23(11): 115501. DOI:10.1088/2058-6272/ac15ee
    5. Ran, H., Song, Y., Yan, J. et al. Improving the surface insulation of epoxy resin by plasma etching. Plasma Science and Technology, 2021, 23(9): 095502. DOI:10.1088/2058-6272/ac050d
    6. Yan, J., Liang, G., Lian, H. et al. Effect of plasma step gradient modification on surface electrical properties of epoxy resin. Plasma Science and Technology, 2021, 23(6): 064012. DOI:10.1088/2058-6272/abef55

    Other cited types(0)

Catalog

    Article views (143) PDF downloads (85) Cited by(6)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return