Advanced Search+
Qingdong ZENG (曾庆栋), Guanghui CHEN (陈光辉), Xiangang CHEN (陈献刚), Boyun WANG (王波云), Boyang WAN (万博阳), Mengtian YUAN (袁梦甜), Yang LIU (刘洋), Huaqing YU (余华清), Lianbo GUO (郭连波), Xiangyou LI (李祥友). Rapid online analysis of trace elements in steel using a mobile fiber-optic laser- induced breakdown spectroscopy system[J]. Plasma Science and Technology, 2020, 22(7): 74013-074013. DOI: 10.1088/2058-6272/ab8a0b
Citation: Qingdong ZENG (曾庆栋), Guanghui CHEN (陈光辉), Xiangang CHEN (陈献刚), Boyun WANG (王波云), Boyang WAN (万博阳), Mengtian YUAN (袁梦甜), Yang LIU (刘洋), Huaqing YU (余华清), Lianbo GUO (郭连波), Xiangyou LI (李祥友). Rapid online analysis of trace elements in steel using a mobile fiber-optic laser- induced breakdown spectroscopy system[J]. Plasma Science and Technology, 2020, 22(7): 74013-074013. DOI: 10.1088/2058-6272/ab8a0b

Rapid online analysis of trace elements in steel using a mobile fiber-optic laser- induced breakdown spectroscopy system

Funds: This work was supported by National Natural Science Foundation of China (Nos. 61705064, 11647122), the Natural Science Foundation of Hubei Province (Nos. 2018CFB773, 2018CFB672), and the Project of the Hubei Provincial Department of Education (No. T201617).
More Information
  • Received Date: January 10, 2020
  • Revised Date: April 14, 2020
  • Accepted Date: April 15, 2020
  • A mobile fiber-optic laser-induced breakdown spectrometer (FO-LIBS) prototype was developed to rapidly detect a large quantity of steel material online and quantitatively analyze the trace elements in a large-diameter steel tube. Twenty-four standard samples and a polynomial fitting method were used to establish calibration curve models. The R 2 factors of the calibration curves were all above 0.99, except for Cu, indicating the elements’ strong self-absorption effect. Five special steel materials were rapidly detected in the steel mill. The average absolute errors of Mn, Cr, Ni, V, Cu, and Mo in the special steel materials were 0.039, 0.440, 0.033, 0.057, 0.003, and 0.07wt%, respectively, and their average relative errors fluctuated from 2.9% to 15.7%. The results demonstrated that the performance of this mobile FO-LIBS prototype can be compared with that of most conventional LIBS systems, but the more robust and flexible characteristics of the FO-LIBS prototype provide a feasible approach for promoting LIBS from the laboratory to the industry.
  • [1]
    Oikawa K, Sumi S I and Ishida K 1999 J. Phase Equilib.20 215
    [2]
    Zeng Q D et al 2019 Plasma Sci. Technol. 21 034006
    [3]
    Guo L B et al 2012 Opt. Express 20 1436
    [4]
    Noll R 2012 Laser-Induced Breakdown Spectroscopy (Berlin: Springer)
    [5]
    Wang Z et al 2014 Front. Phys. 9 419
    [6]
    Guo Y M et al 2017 J. Anal. At. Spectrom. 32 2401
    [7]
    Yao S C et al 2011 Appl. Spectrosc. 65 1197
    [8]
    Zheng P C et al 2015 Plasma Sci. Technol. 17 664
    [9]
    Wang Z et al 2015 Plasma Sci. Technol. 17 617
    [10]
    Zou X et al 2014 Opt. Express 22 10233
    [11]
    Hou J J et al 2019 Plasma Sci. Technol. 21 034016
    [12]
    Winefordner J D et al 2004 J. Anal. At. Spectrom. 19 1061
    [13]
    Zeng Q D et al 2015 J. Anal. At. Spectrom. 30 403
    [14]
    Gravel J F et al 2011 J. Anal. At. Spectrom. 26 1354
    [15]
    Scharun M et al 2013 Spectrochim. Acta Part B 87 198
    [16]
    Zeng Q D et al 2016 J. Anal. At. Spectrom. 31 767
    [17]
    Sturm V et al 2014 Anal. Chem. 86 9687
    [18]
    Afgan M S, Hou Z Y and Wang Z 2017 J. Anal. At. Spectrom.32 1905
    [19]
    Davies C et al 1995 Spectrochim. Acta Part B 50 1059
    [20]
    Gruber J et al 2001 Spectrochim. Acta Part B 56 685
    [21]
    Rai A K et al 2003 Appl. Opt. 42 2078
    [22]
    Thornton B et al 2015 Deep-Sea Res. I 95 20
    [23]
    Rakovsky J et al 2014 Spectrochim. Acta Part B 101 269
    [24]
    Lopez-Moreno C et al 2005 J. Anal. At. Spectrom. 20 552
    [25]
    Freedman A et al 2005 Spectrochim. Acta Part B 60 1076
    [26]
    Wormhoudt J et al 2005 Appl. Spectrosc. 59 1098
    [27]
    Yamamoto K Y et al 1996 Appl. Spectrosc. 50 222
    [28]
    Cuñat J et al 2009 Anal. Chim. Acta 633 38
    [29]
    Cristoforetti G et al 2006 J. Anal. At. Spectrom 21 697
    [30]
    Popov A M, Colao F and Fantoni R 2009 J. Anal. At.Spectrom. 24 602
    [31]
    Guo L B et al 2011 Appl. Phys. Lett. 98 131501
    [32]
    Guo L B et al 2011 Opt. Express 19 14067
  • Related Articles

    [1]Yun LING, Dong DAI, Jiaxin CHANG, Buang WANG. Effect of liquid surface depression size on discharge characteristics and chemical distribution in the plasma-liquid anode system[J]. Plasma Science and Technology, 2024, 26(9): 094002. DOI: 10.1088/2058-6272/ad2b38
    [2]Yikang JIA, Tianhui LI, Rui ZHANG, Pengyu ZHAO, Zifeng WANG, Min CHEN, Li GUO, Dingxin LIU. Different bactericidal abilities of plasma-activated saline with various reactive species prepared by surface plasma-activated air and plasma jet combinations[J]. Plasma Science and Technology, 2024, 26(1): 015502. DOI: 10.1088/2058-6272/ad0c1f
    [3]Shilin SONG, Yuyue HUANG, Yansheng DU, Sisi XIAO, Song HAN, Kun HU, Huihui ZHANG, Huijuan WANG, Chundu WU, Qiong A. Oxidation of ciprofloxacin by the synergistic effect of DBD plasma and persulfate: reactive species and influencing factors analysis[J]. Plasma Science and Technology, 2023, 25(2): 025505. DOI: 10.1088/2058-6272/ac8dd4
    [4]Han XU, Shaoshuai GUO, Hao ZHANG, Kai XIE. Effect of rotating liquid samples on dynamic propagation and aqueous activation of a helium plasma jet[J]. Plasma Science and Technology, 2022, 24(8): 085403. DOI: 10.1088/2058-6272/ac630d
    [5]Sansan PENG (彭三三), Dehui XU (许德晖), Miao QI (祁苗), Rong LIU (刘蓉), Xinying ZHANG (张新颖), Huaiyan ZHANG (张怀延), Bolun PANG (庞波伦), Jin ZHANG (章金), Hao ZHANG (张浩), Zhijie LIU (刘志杰). Investigation of optimum discharge characteristics and chemical activity of AC driven air plasma jet and its anticancer effect[J]. Plasma Science and Technology, 2021, 23(12): 125401. DOI: 10.1088/2058-6272/ac2482
    [6]Yang CAO (曹洋), Guangzhou QU (屈广周), Tengfei LI (李腾飞), Nan JIANG (姜楠), Tiecheng WANG (王铁成). Review on reactive species in water treatment using electrical discharge plasma: formation, measurement, mechanisms and mass transfer[J]. Plasma Science and Technology, 2018, 20(10): 103001. DOI: 10.1088/2058-6272/aacff4
    [7]Zelong ZHANG (张泽龙), Jie SHEN (沈洁), Cheng CHENG (程诚), Zimu XU (许子牧), Weidong XIA (夏维东). Generation of reactive species in atmospheric pressure dielectric barrier discharge with liquid water[J]. Plasma Science and Technology, 2018, 20(4): 44009-044009. DOI: 10.1088/2058-6272/aaa437
    [8]Zhuang LI (李壮), Xiuling ZHANG (张秀玲), Yuzhuo ZHANG (张玉卓), Dongzhi DUAN (段栋之), Lanbo DI (底兰波). Hydrogen cold plasma for synthesizing Pd/C catalysts: the effect of support–metal ion interaction[J]. Plasma Science and Technology, 2018, 20(1): 14016-014016. DOI: 10.1088/2058-6272/aa7f27
    [9]Yuyang WANG (汪宇扬), Cheng CHENG (程诚), Peng GAO (高鹏), Shaopeng LI (李少鹏), Jie SHEN (沈洁), Yan LAN (兰彦), Yongqiang YU (余永强), Paul K CHU (朱剑豪). Cold atmospheric-pressure air plasma treatment of C6 glioma cells: effects of reactive oxygen species in the medium produced by the plasma on cell death[J]. Plasma Science and Technology, 2017, 19(2): 25503-025503. DOI: 10.1088/2058-6272/19/2/025503
    [10]CHEN Bingyan (陈秉岩), ZHU Changping (朱昌平), CHEN Longwei (陈龙威), FEI Juntao (费峻涛), GAO Ying (高莹), WEN Wen (文文), SHAN Minglei (单鸣雷), REN Zhaoxing (任兆杏). Atmospheric Pressure Plasma Jet in Organic Solution: Spectra, Degradation Effects of Solution Flow Rate and Initial pH Value[J]. Plasma Science and Technology, 2014, 16(12): 1126-1134. DOI: 10.1088/1009-0630/16/12/08
  • Cited by

    Periodical cited type(5)

    1. Zhang, X., Ma, X., Li, M. et al. Preparation of nano-silver electromagnetic interference shielding functional coating on PC+ABS plastic via Ar/H2 mixed atmospheric pressure plasma jet. Plasma Processes and Polymers, 2024, 21(3): 2300129. DOI:10.1002/ppap.202300129
    2. Xiang, H., Yue, X., Chu, Y. et al. Rapid Fabrication of N-, Cu-, and Co-Doped Electrodes with Strong Electronic Coupling by Cold Plasma for Electrocatalytic Reduction of Nitrate to Ammonia. Inorganic Chemistry, 2024. DOI:10.1021/acs.inorgchem.4c03089
    3. Zeng, Z., Qiao, J., Zhang, R. et al. Nanocellulose-assisted preparation of electromagnetic interference shielding materials with diversified microstructure. SmartMat, 2022, 3(4): 582-607. DOI:10.1002/smm2.1118
    4. Chang, J., Zhai, H., Hu, Z. et al. Ultra-thin metal composites for electromagnetic interference shielding. Composites Part B: Engineering, 2022. DOI:10.1016/j.compositesb.2022.110269
    5. Zhou, Y., Zhang, J., Xia, G. et al. Preparation of N-doped graphite oxide for supercapacitors by NH3cold plasma. Plasma Science and Technology, 2022, 24(4): 044008. DOI:10.1088/2058-6272/ac48e0

    Other cited types(0)

Catalog

    Article views (156) PDF downloads (133) Cited by(5)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return