Advanced Search+
Longyu KUANG (况龙钰), Feibiao XUE (薛飞彪), Longfei JING (景龙飞), Ruizhen YU (于瑞珍), Huabing DU (杜华冰), Tao YI (易涛), Tingshuai LI (李廷帅), Hang LI (黎航), Yi YU (余羿), Feng WANG (王峰), Shaoen JIANG (江少恩), Guangyue HU (胡广月), Jian ZHENG (郑坚). Fabrication and absolute calibration of B-dot probe for magnetic field measurement on a high power laser facility[J]. Plasma Science and Technology, 2020, 22(8): 85201-085201. DOI: 10.1088/2058-6272/ab8f1c
Citation: Longyu KUANG (况龙钰), Feibiao XUE (薛飞彪), Longfei JING (景龙飞), Ruizhen YU (于瑞珍), Huabing DU (杜华冰), Tao YI (易涛), Tingshuai LI (李廷帅), Hang LI (黎航), Yi YU (余羿), Feng WANG (王峰), Shaoen JIANG (江少恩), Guangyue HU (胡广月), Jian ZHENG (郑坚). Fabrication and absolute calibration of B-dot probe for magnetic field measurement on a high power laser facility[J]. Plasma Science and Technology, 2020, 22(8): 85201-085201. DOI: 10.1088/2058-6272/ab8f1c

Fabrication and absolute calibration of B-dot probe for magnetic field measurement on a high power laser facility

Funds: This work was supported by National Natural Science Foundation of China (Nos. 11435011, 11775204, 11505170, 11405160, 11305160).
More Information
  • Received Date: February 10, 2020
  • Revised Date: April 25, 2020
  • Accepted Date: April 29, 2020
  • The fabrication and absolute calibration of a B-dot probe is employed to measure the pulsed magnetic field at the Shenguang-II high power laser facility. Copper enameled silk with a cross section diameter of 0.1 mm is used to wind the one-turn coil with a 1 mm diameter. Two coils are paired and reversely linked to their respective circuits to form a differential B-dot probe that is sealed in and protected by a quartz shell. This B-dot probe is experimentally calibrated and then used to measure the pulsed magnetic field in laser targeting experiments at the Shenguang-II high power laser facility. Signals show a high performance of this B-dot probe. The common mode noise can be effectively canceled out by the differential pair. The magnetic field of over 300 T can be extrapolated at the location close to the target.
  • [1]
    Yang X Y et al 2016 Rev. Sci. Instrum. 87 11D608
    [2]
    Mariscal D et al 2014 Appl. Phys. Lett. 105 224103
    [3]
    Mellet D S and du Plessis M 2014 Sens. Actuators A: Phys.211 60
    [4]
    Xu P et al 2018 Appl. Phys. Lett. 112 242402
    [5]
    Peter H et al 2012 Exp. Astron. 33 271
    [6]
    Wu J et al 2019 IEEE Trans. Plasma Sci. 47 457
    [7]
    Fu J et al 2014 Rev. Sci. Instrum. 85 11D410
    [8]
    Ignace R 2014 ASTRA Proc. 1 1
    [9]
    Anan T, Casini R and Ichimoto K 2014 Astrophys. J. 786 94
    [10]
    Fujioka S et al 2013 Sci. Rep. 3 1170
    [11]
    Lu R H et al 2004 Phys. Lett. A 333 298
    [12]
    Rose D V et al 2010 Phys. Rev. Spec. Top. Accel. Beams 13 040401
    [13]
    Evans B J and Smith L M 1992 IEEE Trans. Plasma Sci. 20 432
    [14]
    Pitts F L 1982 J. Aircraft 19 246
    [15]
    Lin Z Q et al 1999 Fusion Eng. Des. 44 61
    [16]
    Stamper J A et al 1971 Phys. Rev. Lett. 26 1012
    [17]
    Tatarakis M et al 2002 Nature 415 280
    [18]
    Wagner U et al 2004 Phys. Rev. E 70 026401
    [19]
    Zhao L J et al 2020 Plasma Sci. Technol. 22 025601
    [20]
    Yang J W et al 2016 Plasma Sci. Technol. 18 1044
    [21]
    Yang J W et al 2017 Fusion Sci. Technol. 72 41
  • Related Articles

    [1]Mingjie ZHOU, Haiyun TAN, Lanjian ZHUGE, Xuemei WU. Tunable topological edge state in plasma photonic crystals[J]. Plasma Science and Technology, 2024, 26(11): 115501. DOI: 10.1088/2058-6272/ad62d5
    [2]Zhicheng WU (吴志成), Mengfei DONG (董梦菲), Weili FAN (范伟丽), Kuangya GAO (高匡雅), Yueqiang LIANG (梁月强), Fucheng LIU (刘富成). Microwave transmittance characteristics in different uniquely designed one-dimensional plasma photonic crystals[J]. Plasma Science and Technology, 2021, 23(6): 64014-064014. DOI: 10.1088/2058-6272/abf6c1
    [3]Qinwen XUE (薛钦文), Xiaohua WANG (王晓华), Chenglin LIU (刘成林), Youwen LIU (刘友文). Pressure-controlled terahertz filter based on 1D photonic crystal with a defective semiconductor[J]. Plasma Science and Technology, 2018, 20(3): 35504-035504. DOI: 10.1088/2058-6272/aa98d8
    [4]WANG Guibin (王桂滨), ZHANG Lin (张林), HE Feng (何锋), OUYANG Jiting (欧阳吉庭). Numerical Study on Microwave Scattering by Various Plasma Objects[J]. Plasma Science and Technology, 2016, 18(8): 791-797. DOI: 10.1088/1009-0630/18/8/01
    [5]ZHANG Kaiming (张开明), SUN Dongsheng (孙东升). The Photonic Band Gaps in the Two-Dimensional Plasma Photonic Crystals with Rhombus Lattice[J]. Plasma Science and Technology, 2016, 18(6): 583-589. DOI: 10.1088/1009-0630/18/6/01
    [6]CHANG Lei (苌磊), LI Yinghong (李应红), WU Yun (吴云), ZHANG Huijie (张辉洁), WANG Weimin (王卫民), SONG Huimin (宋慧敏). Dynamic Control of Defective Gap Mode Through Defect Location[J]. Plasma Science and Technology, 2016, 18(1): 1-5. DOI: 10.1088/1009-0630/18/1/01
    [7]QI Limei (亓丽梅), LI Chao (李超), FANG Guangyou (方广有), GAO Xiang (高翔). The Absorbing Properties of Two-Dimensional Plasma Photonic Crystals[J]. Plasma Science and Technology, 2015, 17(1): 4-9. DOI: 10.1088/1009-0630/17/1/02
    [8]ZHANG Wenbo (张文波), WANG Shenggao (王升高), XU Chuanbo (许传波), XU Kaiwei (徐开伟), WANG Mingyang (王明洋), WANG Jianhua (汪建华), HUANG Zhiliang (黄志良), WANG Chuanxin (王传新). Reduction of Ilmenite Through Microwave Plasma[J]. Plasma Science and Technology, 2013, 15(5): 465-468. DOI: 10.1088/1009-0630/15/5/14
    [9]S. PRASAD, Vivek SINGH, A. K. SINGH. Study on the Reflection Spectra of One Dimensional Plasma Photonic Crystals Having Exponentially Graded Materials[J]. Plasma Science and Technology, 2013, 15(5): 443-447. DOI: 10.1088/1009-0630/15/5/10
    [10]Laxmi Shiveshwari. Some New Band Characteristics in One-Dimensional Plasma Dielectric Photonic Crystals[J]. Plasma Science and Technology, 2011, 13(4): 392-396.
  • Cited by

    Periodical cited type(3)

    1. Wu, Z., Jia, M., Hou, X. et al. Band Gap Characteristics of h-BN Superlattice Plasma Photonic Crystals | [h-BN 型超晶格等离子体光子晶体能带特性研究]. Rengong Jingti Xuebao/Journal of Synthetic Crystals, 2023, 52(2): 252-260.
    2. Fan, W., Liu, C., Gao, K. et al. Reconfigurable plasma photonic crystals from triangular lattice to square lattice in dielectric barrier discharge. Physics Letters, Section A: General, Atomic and Solid State Physics, 2021. DOI:10.1016/j.physleta.2021.127223
    3. Yang, L., Chen, Y., Wu, S. et al. Tunability of the Terahertz Bandgap of One-dimensional Microplasma Photonic Crystals | [一维微等离子体光子晶体的太赫兹带隙特征调控]. Gaodianya Jishu/High Voltage Engineering, 2021, 47(3): 865-875. DOI:10.13336/j.1003-6520.hve.20210094

    Other cited types(0)

Catalog

    Article views (108) PDF downloads (94) Cited by(3)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return