Advanced Search+
Junxia RAN (冉俊霞), Haiyun LUO (罗海云), Caixia LI (李彩霞), Xiaowei LI (李晓苇), Xuechen LI (李雪辰). Measurement of the first Townsend's ionization coefficient for atmospheric pressure neon by a dielectric barrier discharge[J]. Plasma Science and Technology, 2020, 22(10): 105401. DOI: 10.1088/2058-6272/ab935b
Citation: Junxia RAN (冉俊霞), Haiyun LUO (罗海云), Caixia LI (李彩霞), Xiaowei LI (李晓苇), Xuechen LI (李雪辰). Measurement of the first Townsend's ionization coefficient for atmospheric pressure neon by a dielectric barrier discharge[J]. Plasma Science and Technology, 2020, 22(10): 105401. DOI: 10.1088/2058-6272/ab935b

Measurement of the first Townsend's ionization coefficient for atmospheric pressure neon by a dielectric barrier discharge

Funds: This research is supported by Postdoctoral Project of Hebei University, National Natural Science Foundation of China (Nos. 11575050, 11875121, 51977057) and Hebei Natural Science Fund (Nos. A2017201099, A2020201008).
More Information
  • Received Date: October 29, 2019
  • Revised Date: May 12, 2020
  • Accepted Date: May 13, 2020
  • Fast photography and optical emission spectroscopy are implemented in a 5 mm neon gap dielectric barrier discharge (DBD) at atmospheric pressure with quartz glass used as the dielectric layer. Results show that it starts with a Townsend discharge and ends at a sub-normal glow discharge in neon DBD. Based on the Townsend discharge, the first ionization coefficient of neon is measured. The measurements are consistent with those at low pressure. Optical emission spectroscopy indicates that the spectra are mainly composed of atomic lines of neon, molecular bands and molecular ion bands originating from inevitable gas impurities (mainly nitrogen). Moreover, spectral lines emitted from atomic neon corresponding to the transitions (2p5 3p → 2p5 3s) are predominant. Although the second positive system of N2(C3Πu → B3Πg) is observed, their intensities are too weak compared with neon's spectrum. The molecular nitrogen ion line of 391.4 nm is observed. It reveals that Penning ionization between high energy neon excited states and the inevitable gas impurities plays an important role in the value of the α coefficient.
  • [1]
    Raizer Y P 1991 Gas Discharge Physics (Berlin: Springer)
    [2]
    Park C, Graber L and Pamidi S 2017 J. Appl. Phys. 121 083304
    [3]
    Noy M J and Ernest A D 1992 J. Phys. D: Appl. Phys. 25 1210
    [4]
    Chanin L M and Rork G D 1963 Phys. Rev. 132 2547
    [5]
    Willis B A and Morgan C G 1968 J. Phys. D: Appl. Phys.1 1219
    [6]
    Kruithof A A and Penning F M 1937 Physica 4 430
    [7]
    Druyvesteyn M J and Penning F M 1940 Rev. Modern Phys.12 87
    [8]
    Ran J X et al 2014 J. Phys. Soc. Japan 83 074503
    [9]
    Wang Y H and Wang D Z 2005 Phys. Plasmas 12 023503
    [10]
    Boisvert J S, Margot J and Massines F 2017 Plasma Sources Sci. Technol. 26 035004
    [11]
    Fang Z et al 2009 J. Phys. D: Appl. Phys. 42 085203
    [12]
    Ran J X et al 2018 Phys. Plasmas 25 033511
    [13]
    Zhang Y et al 2009 J. Appl. Phys. 106 113308
    [14]
    Luo H Y et al 2010 J. Phys. D: Appl. Phys. 43 155201
    [15]
    Ran J X, Luo H Y and Wang X X 2011 J Phys. D: Appl. Phys.44 335203
    [16]
    Navrátil Z et al 2006 Plasma Sources Sci. Technol. 15 8
  • Related Articles

    [1]A A LASHIN, T M ALLAM, H A EL-SAYED, Kamal M AHMED, S A WARD, H M SOLIMAN, M A ABOUELATTA. Magnetic field induction and magnetic force distribution profiles in plasma focus discharge device[J]. Plasma Science and Technology, 2021, 23(7): 75405-075405. DOI: 10.1088/2058-6272/ac01d2
    [2]Rishi VERMA, Ekansh MISHRA, Prosenjit DHANG, Basanta Kumar DAS, Manraj MEENA, Lakshman RONGALI, Archana SHARMA. Development and performance characterization of a compact plasma focus based portable fast neutron generator[J]. Plasma Science and Technology, 2020, 22(11): 115506. DOI: 10.1088/2058-6272/abb079
    [3]K J ZHAO (赵开君), J Q DONG (董家齐), J Q LI (李继全), LW YAN (严龙文). A brief review: experimental investigation of zonal flows and geodesic acoustic modes in fusion plasmas[J]. Plasma Science and Technology, 2018, 20(9): 94006-094006. DOI: 10.1088/2058-6272/aad382
    [4]Neda SHAMSIAN, Babak SHIRANI BIDABADI, Hosein PIRJAMADI. Development of a radiographic method for measuring the discrete spectrum of the electron beam from a plasma focus device[J]. Plasma Science and Technology, 2017, 19(7): 75101-075101. DOI: 10.1088/2058-6272/aa632e
    [5]MIAO Feng (苗峰), ZHENG Xianjun (曾宪俊), DENG Baiquan (邓柏权). Nuclear Fusion Within Extremely Dense Plasma Enhanced by Quantum Particle Waves[J]. Plasma Science and Technology, 2015, 17(5): 366-371. DOI: 10.1088/1009-0630/17/5/03
    [6]M. A. MOHAMMADI, S. HEDYEH. Study of Current Sheath Velocity and Its Distribution Using Tridimensional Magnetic Probe in Sahand Plasma Focus[J]. Plasma Science and Technology, 2015, 17(5): 353-357. DOI: 10.1088/1009-0630/17/5/01
    [7]YUAN Guoliang(袁国梁), YANG Qingwei(杨青巍), YANG Jinwei(杨进蔚), SONG Xianying(宋先瑛), LI Xu(李旭), WU Huajian(吴华剑), WANG Zhiqiang(王志强). Fusion Neutron Flux Detector for the ITER[J]. Plasma Science and Technology, 2014, 16(2): 168-171. DOI: 10.1088/1009-0630/16/2/14
    [8]I. A. KHAN, R. S. RAWAT, R. VERMA, G. MACHARAGA, R. AHMAD, Z. A. UMAR, et al.. Role of Ion Beam Irradiation and Annealing Effect on the Deposition of AlON Nanolayers by Using Plasma Focus Device[J]. Plasma Science and Technology, 2013, 15(11): 1127-1135. DOI: 10.1088/1009-0630/15/11/10
    [9]K. Mikaili AGAH, M. GHORANNEVISS, M. K. SALEM, A. Salar ELAHI, S. MOHAMMADI, R. ARVIN. Increase of Diagnostic Mirror Lifetime Using TiN Coated Stainless Steel by Using a Plasma Focus Device[J]. Plasma Science and Technology, 2013, 15(5): 485-488. DOI: 10.1088/1009-0630/15/5/18
    [10]Heinrich HORA, George H. MILEY, HE Xiantu, ZHENG Wudi, Paraskevas LALOUSIS, Istvan F?OLDES, Sandor SZATMARI, Stavros MOUSTAIZIS, Reynaldo CASTILLO. Ultrahigh Acceleration of Plasma Blocks by Nonlinear Forces for Side-On Laser Ignition of Solid Density Fusion Fuel[J]. Plasma Science and Technology, 2013, 15(5): 420-424. DOI: 10.1088/1009-0630/15/5/05
  • Cited by

    Periodical cited type(14)

    1. Song, Y., Zhao, J., Zheng, B. et al. Atmospheric pressure plasma jet deposition of TiO2 layer on alumina/epoxy to improve electrical properties. Plasma Science and Technology, 2025, 27(1): 015501. DOI:10.1088/2058-6272/ad8f0b
    2. Dong, M., Yang, Z., Xia, G. et al. Enhance the Surface Insulation Properties of EP Materials via Plasma and Fluorine-Containing Coupling Agent Co-Fluorinated Graphene. Nanomaterials, 2024, 14(24): 2009. DOI:10.3390/nano14242009
    3. Wei, M., Gao, W., Zhao, D. et al. Research on the Electrical and Hydrophobicity Properties of BN/RTV Composite Materials by Plasma Treatment. Springer Proceedings in Physics, 2024. DOI:10.1007/978-981-97-2245-7_19
    4. Yanze, S., Qijun, D., Jun, X. et al. Plasma Etching Constructs Step Gradient Surface Conductivity to Improve the Insulation Properties of Epoxy Resin. IEEE Transactions on Dielectrics and Electrical Insulation, 2024, 31(5): 2603-2612. DOI:10.1109/TDEI.2024.3403535
    5. Ruan, H., Xie, Q., Duan, Q. et al. Regulation Method and Mechanism of Functionalized Modified Nano Filler on Electrical Properties of Epoxy Resin. Engineering Materials, 2024. DOI:10.1007/978-981-99-9050-4_4
    6. Duan, Q., Song, Y., Shao, S. et al. Enhanced surface-insulating performance of EP composites by doping plasma-fluorinated ZnO nanofiller. Plasma Science and Technology, 2023, 25(10): 104004. DOI:10.1088/2058-6272/acdb53
    7. Wang, T., Wang, X., Yang, W. et al. Formation of wettability gradient surface on polyethylene terephthalate by maskless argon microplasma jet writing for droplet self-driven application. Applied Surface Science, 2023. DOI:10.1016/j.apsusc.2023.157383
    8. Duan, Q., Xia, G., Song, Y. et al. Plasma Fluorinated Nano-SiO2 Enhances the Surface Insulation Performance of Glass Fiber Reinforced Polymer. Nanomaterials, 2023, 13(5): 906. DOI:10.3390/nano13050906
    9. Li, F., Wei, P., Chu, J. et al. Promotion on Surface Charge Dissipation by Surface Functionally Graded Modification of SDBD. 2023. DOI:10.1109/ICEMPE57831.2023.10139613
    10. Cui, X., Shen, J., Zhou, Y. et al. Nanosecond pulse-driven atmospheric-pressure plasmas for polymer surface modifications: Wettability performance, insulation evaluation and mechanisms. Applied Surface Science, 2022. DOI:10.1016/j.apsusc.2022.153640
    11. Xie, Q., Duan, Q., Xia, G. et al. Effect of liquid diffusion and segregation on GFRP insulation performance in typical hygrothermal environment. Composites Part B: Engineering, 2022. DOI:10.1016/j.compositesb.2022.110152
    12. Yan, J., Liang, G., Duan, Q. et al. Effect of Plasma Surface Step Gradient Silicon Deposition on Flashover Properties of Epoxy Resin | [等离子体表面阶跃型梯度硅沉积对环氧树脂闪络性能的影响]. Diangong Jishu Xuebao/Transactions of China Electrotechnical Society, 2022, 37(9): 2377-2387. DOI:10.19595/j.cnki.1000-6753.tces.210476
    13. Yan, J., Liang, G., Lian, H. et al. Improving the surface flashover performance of epoxy resin by plasma treatment: A comparison of fluorination and silicon deposition under different modes. Plasma Science and Technology, 2021, 23(11): 115501. DOI:10.1088/2058-6272/ac15ee
    14. Mei, D., Zhang, S., Tang, J. Special issue on selected papers from HVDP 2020. Plasma Science and Technology, 2021, 23(6): 060101. DOI:10.1088/2058-6272/ac02ab

    Other cited types(0)

Catalog

    Article views (135) PDF downloads (246) Cited by(14)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return