Advanced Search+
Chong CHEN (陈冲), Maolin CHEN (陈茂林), Haohao ZHOU (周浩浩). Characterization of an ionic liquid electrospray thruster with a porous ceramic emitter[J]. Plasma Science and Technology, 2020, 22(9): 94009-094009. DOI: 10.1088/2058-6272/ab9528
Citation: Chong CHEN (陈冲), Maolin CHEN (陈茂林), Haohao ZHOU (周浩浩). Characterization of an ionic liquid electrospray thruster with a porous ceramic emitter[J]. Plasma Science and Technology, 2020, 22(9): 94009-094009. DOI: 10.1088/2058-6272/ab9528

Characterization of an ionic liquid electrospray thruster with a porous ceramic emitter

More Information
  • Received Date: January 01, 2020
  • Revised Date: May 18, 2020
  • Accepted Date: May 19, 2020
  • An ionic liquid (IL) electrospray thruster was developed for application in micro-nano satellites or gravitational wave detectors. The thruster employed a porous ceramic emitter with seven emitter strips located on its emission surface. Without any liquid-supply device, IL was delivered through porous media to emitter strips via capillary effect. Multiple emission sites then formed at the tip of each strip. A charged beam of up to 350 μA (with a current density of 540 μA cm−2 ) was stably produced in the negative mode. However, in the positive mode, a corona was observed which could prevent the thruster from emitting larger current. A time-of-flight mass spectrometer with significantly improved signal-to-noise ratio was built, which was used to obtain the mass distribution of the beam of the thruster. A retarding potential analysis was also performed. The test results showed that the thruster worked in the pure-ion regime, and delivered a maximum thrust of 67.1 μN with specific impulses of 3952 s and 3117 s in the positive and negative modes, respectively.
  • [1]
    Lozano P C, Martínez-Sánchez M and Hruby V 2010 Electrospray propulsion Encyclopedia of Aerospace Engineering ed K J Yoon et al (New York: Wiley)
    [2]
    Rosell-Llompart J, Grifoll J and Loscertales I G 2018 J. Aerosol Sci. 125 2
    [3]
    Taylor G I 1964 Proc. R. Soc. A 280 383
    [4]
    De La Mora J F and Loscertales I G 1994 J. Fluid Mech.260 155
    [5]
    Romero-Sanz I et al 2003 J. Appl. Phys. 94 3599
    [6]
    Lozano P 2003 Studies on the ion-droplet mixed regime in colloid thrusters PhD Thesis Massachusetts Institute of Technology, Cambridge, USA
    [7]
    Krpoun R and Shea H 2008 Onset voltage modeling of micromachined colloid thrusters Proc. 44th AIAA/ASME/SAE/ASEE Joint Propulsion Conf. & Exhibit (Hartford, CT,USA) (Reston, VA: AIAA)
    [8]
    Tajmar M, Genovese A and Steiger W 2004 J. Propul. Power 20 211
    [9]
    Paita L et al 2009 Alta’s FT-150 FEEP microthruster:development and qualification status Proc. 31st Int. Electric Propulsion Conf. (Michigan, USA 2009) (IEPC)
    [10]
    Ziemer J et al 2017 Colloid microthruster flight performance results from space technology 7 disturbance reduction system Proc. 35th Int. Electric Propulsion Conf. (Atlanta,GA, USA, 2017) (NASA Headquarters)
    [11]
    Lenguito G and Gomez A 2014 J. Microelectromech. Syst.23 689
    [12]
    Krpoun R et al 2009 Appl. Phys. Lett. 94 163502
    [13]
    Dandavino S et al 2014 J. Micromech. Microeng. 24 075011
    [14]
    Inoue N et al 2019 Japan. J. Appl. Phys. 58 SEEG04
    [15]
    Gassend B et al 2009 J. Microelectromech. Syst. 18 679
    [16]
    Hill F A et al 2014 J. Microelectromech. Syst. 23 1237
    [17]
    Courtney D G, Li H Q and Lozano P 2012 J. Phys. D: Appl.Phys. 45 485203
    [18]
    Krejci D et al 2017 J. Spacecr. Rockets 54 447
    [19]
    Liu X Y et al Rev. Sci. Instrum. 90 123304
    [20]
    Ma C, Bull T and Ryan C 2017 Feasibility study of a micro-electrospray thruster based on a porous glass emitter substrate Proc. 35th Int. Electric Propulsion Conf. (Atlanta,Georgia, USA, 2017) (IEPC)
    [21]
    Courtney D G, Dandavino S and Shea H 2016 J. Propul.Power 32 392
    [22]
    Krejci D and Lozano P 2017 Micro-machined ionic liquid electrospray thrusters for Cubesat applications Proc. 35th Int. Electric Propulsion Conf. (Atlanta, Georgia, USA,2017) (IEPC)
    [23]
    Biagioni L et al 2005 Qualification status of the FEEP-150 electric micropropulsion subsystem Proc. 41st AIAA/ASME/SAE/ASEE Joint Propulsion Conf. & Exhibit (Tucson,Arizona, USA, 2005) (Reston, VA: AIAA)
    [24]
    Lenguito G, de la Mora J F and Gomez A 2014 J. Micromech.Microeng. 24 055003
    [25]
    Fridman A and Kennedy L A 2011 Plasma Physics andEngineering 2nd edn (Boca Raton, FL: CRC Press)
    [26]
    Iribarne J V and Thomson B A 1976 J. Chem. Phys. 64 2287
    [27]
    Miller C E and Lozano P C 2016 Measurement of the fragmentation rates of solvated ions in ion electrospray thrusters Proc. 52nd AIAA/SAE/ASEE Joint Propulsion Conf. (Salt Lake City, UT, USA) (Reston, VA: AIAA)
    [28]
    Gamero-Castano M and Hruby V 2011 J. Propul. Power 17 977
  • Related Articles

    [1]Longfei Ma, jinhao liu, Jiahao Fu, Jianwu He, Li Duan, Qi Kang. Performance of radio frequency ion thruster with polytetrafluoroethylene propellant embedded in discharge chamber[J]. Plasma Science and Technology. DOI: 10.1088/2058-6272/adae44
    [2]Zongqi XU, Pingyang WANG, Dongsheng CAI, Rui TAN, Wenjing JIANG. Performance investigation of a low-power Hall thruster fed on iodine propellant[J]. Plasma Science and Technology, 2024, 26(6): 065501. DOI: 10.1088/2058-6272/ad240e
    [3]Zhiwei HUA, Pingyang WANG, Zhongxi NING, Zhanwen YE, Zongqi XU. Early experimental investigation of the C12A7 hollow cathode fed on iodine[J]. Plasma Science and Technology, 2022, 24(7): 074004. DOI: 10.1088/2058-6272/ac4fb4
    [4]Xinghua ZHANG, Zhenhua ZHANG, Shaoxia JIA, Ting JIN, Jinghua YANG, Long LI, Fangfang LIU, Yong CAI, Jian CAI. Influence of anode temperature on ignition performance of the IRIT4-2D iodine-fueled radio frequency ion thruster[J]. Plasma Science and Technology, 2022, 24(1): 015506. DOI: 10.1088/2058-6272/ac34e6
    [5]Min ZHU (朱敏), Chao YE (叶超), Xiangying WANG (王响英), Amin JIANG (蒋阿敏), Su ZHANG (张苏). Effect of radio-frequency substrate bias on ion properties and sputtering behavior of 2 MHz magnetron sputtering[J]. Plasma Science and Technology, 2019, 21(1): 15507-015507. DOI: 10.1088/2058-6272/aae7dd
    [6]Chenchen WU (吴辰宸), Xinfeng SUN (孙新锋), Zuo GU (顾左), Yanhui JIA (贾艳辉). Numerical research of a 2D axial symmetry hybrid model for the radio-frequency ion thruster[J]. Plasma Science and Technology, 2018, 20(4): 45502-045502. DOI: 10.1088/2058-6272/aaa8d9
    [7]LIANG Tian (梁田), ZHENG Zhiyuan (郑志远), ZHANG Siqi (张思齐), TANG Weichong (汤伟冲), XIAO Ke (肖珂), LIANG Wenfei (梁文飞), GAO Lu (高禄), GAO Hua (高华). Influence of Surface Radius Curvature on Laser Plasma Propulsion with Ablation Water Propellant[J]. Plasma Science and Technology, 2016, 18(10): 1034-1037. DOI: 10.1088/1009-0630/18/10/11
    [8]ZHENG Zhiyuan(郑志远), GAO Hua(高华), FAN Zhenjun(樊振军), XING Jie(邢杰). Characteristics of Droplets Ejected from Liquid Propellants Ablated by Laser Pulses in Laser Plasma Propulsion[J]. Plasma Science and Technology, 2014, 16(3): 251-254. DOI: 10.1088/1009-0630/16/3/14
    [9]ZHANG Saiqian(张赛谦), DAI Zhongling(戴忠玲), WANG Younian(王友年). Ion Transport to a Photoresist Trench in a Radio Frequency Sheath[J]. Plasma Science and Technology, 2012, 14(11): 958-964. DOI: 10.1088/1009-0630/14/11/03
    [10]DAI Zhongling(戴忠玲), YUE Guang(岳光), WANG Younian(王友年). Simulations of Ion Behaviors in a Photoresist Trench During Plasma Etching Driven by a Radio-Frequency Source[J]. Plasma Science and Technology, 2012, 14(3): 240-244. DOI: 10.1088/1009-0630/14/3/10
  • Cited by

    Periodical cited type(18)

    1. Lu, S., Dong, L., Guo, N. et al. Coupling operation characterization of the Hall micro thruster with a thermal emission cathode with a grid. Vacuum, 2025. DOI:10.1016/j.vacuum.2025.114152
    2. Liang, S., Xu, L., Lu, S. et al. Development of a micro-thrust measurement system and ground thrust measurement of the micro Hall thruster for Taiji mission. Acta Astronautica, 2025. DOI:10.1016/j.actaastro.2025.01.047
    3. Gou, Y., Pang, A., Liu, H. et al. Design of feedback control for field emission thrusters with wide thrust range and fast response. Advances in Space Research, 2025. DOI:10.1016/j.asr.2025.01.032
    4. Fu, C., Dong, Y., Li, Y. et al. Neutralizer-free extraction characteristics of micro RF ion thruster | [微型射频离子推力器自中和引出特性研究]. Tuijin Jishu/Journal of Propulsion Technology, 2024, 45(9): 260-268. DOI:10.13675/j.cnki.tjjs.2305052
    5. Lu, S., Xu, L., Guo, N. et al. Study on the electron emission characteristics of a thermal emission cathode with grid for micro-electric thruster. Vacuum, 2024. DOI:10.1016/j.vacuum.2023.112850
    6. Wang, Y., Wu, Z., Huang, T. et al. Operating Characteristics of Carbon Nanotube Neutralizer for Space Exploration Missions | [碳纳米管中和器工作特性研究]. Journal of Deep Space Exploration, 2024, 11(2): 151-158. DOI:10.15982/j.issn.2096-9287.2024.20240004
    7. Chen, Z., Xiao, D., Du, H. et al. Research on Long Life Carbon Nanotube Cathodes for Deep Space Exploration Missions | [面向深空探测任务的长寿命碳纳米管阴极研究]. Journal of Deep Space Exploration, 2024, 11(2): 124-131. DOI:10.15982/j.issn.2096-9287.2024.20230152
    8. Ma, L., He, J., Luo, J. et al. Research Progress of Radio Frequency Ion Thruster | [射频离子推力器研究进展]. Journal of Deep Space Exploration, 2024, 11(2): 111-123. DOI:10.15982/j.issn.2096-9287.2024.20230036
    9. Chen, M., Zhang, C., He, J. et al. A Design Method for Redundant Microthruster Layout with Allocation Error. International Journal of Aerospace Engineering, 2024. DOI:10.1155/2024/7627257
    10. Jiang, W., Wei, L., Yang, X. et al. Influence of matching network and frequency on the effective quality factor and performance of a miniature radio frequency ion thruster. Journal of Applied Physics, 2023, 134(3): 033301. DOI:10.1063/5.0147744
    11. Lu, S., Dong, L., Luo, W. et al. Review of closed drift thruster neutral flow dynamics. AIP Advances, 2023, 13(7): 070701. DOI:10.1063/5.0152272
    12. Jiang, W., Wei, L., Yang, X. et al. Influence of coil structure and position on the performance of miniature radio frequency ion thrusters. Vacuum, 2023. DOI:10.1016/j.vacuum.2023.111911
    13. Liu, P., Jiang, K., Fan, S. Carbon nano materials vacuum electronics. 2023. DOI:10.1109/IVEC56627.2023.10157526
    14. Geng, Y., Zhu, R., Maimaituerxun, M. Bibliometric review of carbon neutrality with CiteSpace: evolution, trends, and framework. Environmental Science and Pollution Research, 2022, 29(51): 76668-76686. DOI:10.1007/s11356-022-23283-3
    15. Meng, S., Zhu, X., Kang, Y. et al. Investigation on the radial distribution of electron density in a miniaturized ECR ion thruster of wide-range operations. Vacuum, 2022. DOI:10.1016/j.vacuum.2022.111138
    16. He, J.-W., Duan, L., Kang, Q. Ground performance tests and evaluation of RF ion microthrusters for Taiji-1 satellite. International Journal of Modern Physics A, 2021, 36(11-12): 2140014. DOI:10.1142/S0217751X21400145
    17. Xu, S.-Y., Xu, L.-X., Cong, L.-X. et al. First result of orbit verification of Taiji-1 hall micro thruster. International Journal of Modern Physics A, 2021, 36(11-12): 2140013. DOI:10.1142/S0217751X21400133
    18. Wang, Z.-L., Min, J. Electronic noise analysis and in-orbit resolution verification of an electrostatic accelerometer. International Journal of Modern Physics A, 2021, 36(11-12): 2140009. DOI:10.1142/S0217751X21400091

    Other cited types(0)

Catalog

    Article views (140) PDF downloads (462) Cited by(18)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return