Advanced Search+
Haidong LU (卢海东), Maogen SU (苏茂根), Qi MIN (敏琦), Shiquan CAO (曹世权), Siqi HE (何思奇), Chenzhong DONG (董晨钟), Yanbiao FU (符彦飙). Effect of dielectronic recombination on charge-state distribution in laser-produced plasma based on steady-state collisional-radiative models[J]. Plasma Science and Technology, 2020, 22(10): 105001. DOI: 10.1088/2058-6272/ab9889
Citation: Haidong LU (卢海东), Maogen SU (苏茂根), Qi MIN (敏琦), Shiquan CAO (曹世权), Siqi HE (何思奇), Chenzhong DONG (董晨钟), Yanbiao FU (符彦飙). Effect of dielectronic recombination on charge-state distribution in laser-produced plasma based on steady-state collisional-radiative models[J]. Plasma Science and Technology, 2020, 22(10): 105001. DOI: 10.1088/2058-6272/ab9889

Effect of dielectronic recombination on charge-state distribution in laser-produced plasma based on steady-state collisional-radiative models

Funds: This work is supported by the National Key Research and Development Program of China (Grant No. 2017YFA0402300), National Natural Science Foundation of China (NSFC) (Grant Nos. 11904293, 11874051).
More Information
  • Received Date: March 06, 2020
  • Revised Date: May 28, 2020
  • Accepted Date: May 31, 2020
  • Armed with four different steady-state collisional-radiative (CR) models, we investigated the effect of dielectronic recombination (DR) on the charge-state distribution in laser-produced silicon plasma. To assess this effect, we performed a series of temporally resolved spectra of highly charged Si ions in the extreme ultraviolet region. Ab initio calculations of the DR rate coefficients were done for Si6+–Si4+ ions. We also analyzed the evolution of the collisional ionization, radiative recombination, three-body recombination, photo-ionization, and DR rate coefficients as a function of electron temperature. The electron temperature and electron density for different delay times were obtained by comparing the normalized experimental and simulated spectra. The ion fraction and average charge state from the four different CR models were also obtained. The results indicate that the DR process has a greater influence in the stage of plasma evolution that cannot be neglected in plasma diagnoses.
  • [1]
    Burgess A 1964 Astrophys. J. 139 776
    [2]
    Schippers S et al 2011 Phys. Rev. A 83 012711
    [3]
    Dubau J and Volonte S 1980 Rep. Prog. Phys. 43 199
    [4]
    Zatsarinny O et al 2003 Astron. Astrophys. 412 587
    [5]
    Jacobs V L et al 1989 Phys. Rev. A 39 2411
    [6]
    Peter T et al 1986 Phys. Rev. Lett. 57 1859
    [7]
    Fu Y B et al 2011 Phys. Rev. A 83 062708
    [8]
    Li B W et al 2012 Phys. Rev. A 85 052706
    [9]
    Kwon D H 2018 J. Quant. Spectrosc. Radiat. Transfer 208 64
    [10]
    Safronova U I et al 2008 J. Phys. B: At. Mol. Opt. Phys. 42 015001
    [11]
    Preval S P et al 2017 J. Phys. B: At. Mol. Opt. Phys. 50 105201
    [12]
    Song M Y et al 2008 J. Phys. Soc. Japan 77 064302
    [13]
    Su M G et al 2017 Sci. Rep. 7 45212
    [14]
    Duston D and Davis J 1980 Phys. Rev. A 21 1664
    [15]
    White J 2006 Opening the extreme ultraviolet lithography source bottleneck: developing a 13.5 nm laser-produced plasma source for the semiconductor industry PhD Thesis University College Dublin, Dublin, Ireland
    [16]
    Colombant D and Tonon G F 1973 J. Appl. Phys. 44 3524
    [17]
    Burdt R A et al 2010 J. Appl. Phys. 107 043303
    [18]
    White J et al 2005 J. Appl. Phys. 98 113301
    [19]
    Su M G et al 2017 Phys Plasmas 24 043302
    [20]
    Chowdhury A et al 2005 Pramana—J. Phys. 64 141
    [21]
    Louzon E et al 2012 High Energy Density Phys. 8 81
    [22]
    Sinha B K et al 1999 J. Plasma Fusion Res. Ser. 2 406
    [23]
    Gupta G P and Sinha B K 1996 J. Appl. Phys. 79 619
    [24]
    Gupta G P and Sinha B K 1997 Phys. Rev. E 56 2104
    [25]
    Gu M F 2008 Can. J. Phys. 86 675
    [26]
    Cao S Q et al 2018 Phys. Plasmas 25 023304
    [27]
    Huddlestone R H and Leonard S L 1965 Plasma Diagnostic Techniques (New York: Academic)
    [28]
    Kolb A C et al 1964 Phys. Fluids 7 519
    [29]
    Peacock N J and Pease R S 1969 J. Phys. D: Appl. Phys.2 1705
    [30]
    Zelʹdovich Y B and Raizer Y P 1966 Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena (New York: Academic)
    [31]
    Atomic Data and Analysis Structure (ADAS) (http://open.adas.ac.uk/)
  • Related Articles

    [1]A A LASHIN, T M ALLAM, H A EL-SAYED, Kamal M AHMED, S A WARD, H M SOLIMAN, M A ABOUELATTA. Magnetic field induction and magnetic force distribution profiles in plasma focus discharge device[J]. Plasma Science and Technology, 2021, 23(7): 75405-075405. DOI: 10.1088/2058-6272/ac01d2
    [2]Rishi VERMA, Ekansh MISHRA, Prosenjit DHANG, Basanta Kumar DAS, Manraj MEENA, Lakshman RONGALI, Archana SHARMA. Development and performance characterization of a compact plasma focus based portable fast neutron generator[J]. Plasma Science and Technology, 2020, 22(11): 115506. DOI: 10.1088/2058-6272/abb079
    [3]K J ZHAO (赵开君), J Q DONG (董家齐), J Q LI (李继全), LW YAN (严龙文). A brief review: experimental investigation of zonal flows and geodesic acoustic modes in fusion plasmas[J]. Plasma Science and Technology, 2018, 20(9): 94006-094006. DOI: 10.1088/2058-6272/aad382
    [4]Neda SHAMSIAN, Babak SHIRANI BIDABADI, Hosein PIRJAMADI. Development of a radiographic method for measuring the discrete spectrum of the electron beam from a plasma focus device[J]. Plasma Science and Technology, 2017, 19(7): 75101-075101. DOI: 10.1088/2058-6272/aa632e
    [5]MIAO Feng (苗峰), ZHENG Xianjun (曾宪俊), DENG Baiquan (邓柏权). Nuclear Fusion Within Extremely Dense Plasma Enhanced by Quantum Particle Waves[J]. Plasma Science and Technology, 2015, 17(5): 366-371. DOI: 10.1088/1009-0630/17/5/03
    [6]M. A. MOHAMMADI, S. HEDYEH. Study of Current Sheath Velocity and Its Distribution Using Tridimensional Magnetic Probe in Sahand Plasma Focus[J]. Plasma Science and Technology, 2015, 17(5): 353-357. DOI: 10.1088/1009-0630/17/5/01
    [7]YUAN Guoliang(袁国梁), YANG Qingwei(杨青巍), YANG Jinwei(杨进蔚), SONG Xianying(宋先瑛), LI Xu(李旭), WU Huajian(吴华剑), WANG Zhiqiang(王志强). Fusion Neutron Flux Detector for the ITER[J]. Plasma Science and Technology, 2014, 16(2): 168-171. DOI: 10.1088/1009-0630/16/2/14
    [8]I. A. KHAN, R. S. RAWAT, R. VERMA, G. MACHARAGA, R. AHMAD, Z. A. UMAR, et al.. Role of Ion Beam Irradiation and Annealing Effect on the Deposition of AlON Nanolayers by Using Plasma Focus Device[J]. Plasma Science and Technology, 2013, 15(11): 1127-1135. DOI: 10.1088/1009-0630/15/11/10
    [9]K. Mikaili AGAH, M. GHORANNEVISS, M. K. SALEM, A. Salar ELAHI, S. MOHAMMADI, R. ARVIN. Increase of Diagnostic Mirror Lifetime Using TiN Coated Stainless Steel by Using a Plasma Focus Device[J]. Plasma Science and Technology, 2013, 15(5): 485-488. DOI: 10.1088/1009-0630/15/5/18
    [10]Heinrich HORA, George H. MILEY, HE Xiantu, ZHENG Wudi, Paraskevas LALOUSIS, Istvan F?OLDES, Sandor SZATMARI, Stavros MOUSTAIZIS, Reynaldo CASTILLO. Ultrahigh Acceleration of Plasma Blocks by Nonlinear Forces for Side-On Laser Ignition of Solid Density Fusion Fuel[J]. Plasma Science and Technology, 2013, 15(5): 420-424. DOI: 10.1088/1009-0630/15/5/05
  • Cited by

    Periodical cited type(14)

    1. Song, Y., Zhao, J., Zheng, B. et al. Atmospheric pressure plasma jet deposition of TiO2 layer on alumina/epoxy to improve electrical properties. Plasma Science and Technology, 2025, 27(1): 015501. DOI:10.1088/2058-6272/ad8f0b
    2. Dong, M., Yang, Z., Xia, G. et al. Enhance the Surface Insulation Properties of EP Materials via Plasma and Fluorine-Containing Coupling Agent Co-Fluorinated Graphene. Nanomaterials, 2024, 14(24): 2009. DOI:10.3390/nano14242009
    3. Wei, M., Gao, W., Zhao, D. et al. Research on the Electrical and Hydrophobicity Properties of BN/RTV Composite Materials by Plasma Treatment. Springer Proceedings in Physics, 2024. DOI:10.1007/978-981-97-2245-7_19
    4. Yanze, S., Qijun, D., Jun, X. et al. Plasma Etching Constructs Step Gradient Surface Conductivity to Improve the Insulation Properties of Epoxy Resin. IEEE Transactions on Dielectrics and Electrical Insulation, 2024, 31(5): 2603-2612. DOI:10.1109/TDEI.2024.3403535
    5. Ruan, H., Xie, Q., Duan, Q. et al. Regulation Method and Mechanism of Functionalized Modified Nano Filler on Electrical Properties of Epoxy Resin. Engineering Materials, 2024. DOI:10.1007/978-981-99-9050-4_4
    6. Duan, Q., Song, Y., Shao, S. et al. Enhanced surface-insulating performance of EP composites by doping plasma-fluorinated ZnO nanofiller. Plasma Science and Technology, 2023, 25(10): 104004. DOI:10.1088/2058-6272/acdb53
    7. Wang, T., Wang, X., Yang, W. et al. Formation of wettability gradient surface on polyethylene terephthalate by maskless argon microplasma jet writing for droplet self-driven application. Applied Surface Science, 2023. DOI:10.1016/j.apsusc.2023.157383
    8. Duan, Q., Xia, G., Song, Y. et al. Plasma Fluorinated Nano-SiO2 Enhances the Surface Insulation Performance of Glass Fiber Reinforced Polymer. Nanomaterials, 2023, 13(5): 906. DOI:10.3390/nano13050906
    9. Li, F., Wei, P., Chu, J. et al. Promotion on Surface Charge Dissipation by Surface Functionally Graded Modification of SDBD. 2023. DOI:10.1109/ICEMPE57831.2023.10139613
    10. Cui, X., Shen, J., Zhou, Y. et al. Nanosecond pulse-driven atmospheric-pressure plasmas for polymer surface modifications: Wettability performance, insulation evaluation and mechanisms. Applied Surface Science, 2022. DOI:10.1016/j.apsusc.2022.153640
    11. Xie, Q., Duan, Q., Xia, G. et al. Effect of liquid diffusion and segregation on GFRP insulation performance in typical hygrothermal environment. Composites Part B: Engineering, 2022. DOI:10.1016/j.compositesb.2022.110152
    12. Yan, J., Liang, G., Duan, Q. et al. Effect of Plasma Surface Step Gradient Silicon Deposition on Flashover Properties of Epoxy Resin | [等离子体表面阶跃型梯度硅沉积对环氧树脂闪络性能的影响]. Diangong Jishu Xuebao/Transactions of China Electrotechnical Society, 2022, 37(9): 2377-2387. DOI:10.19595/j.cnki.1000-6753.tces.210476
    13. Yan, J., Liang, G., Lian, H. et al. Improving the surface flashover performance of epoxy resin by plasma treatment: A comparison of fluorination and silicon deposition under different modes. Plasma Science and Technology, 2021, 23(11): 115501. DOI:10.1088/2058-6272/ac15ee
    14. Mei, D., Zhang, S., Tang, J. Special issue on selected papers from HVDP 2020. Plasma Science and Technology, 2021, 23(6): 060101. DOI:10.1088/2058-6272/ac02ab

    Other cited types(0)

Catalog

    Article views (130) PDF downloads (164) Cited by(14)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return