Citation: | Haidong LU (卢海东), Maogen SU (苏茂根), Qi MIN (敏琦), Shiquan CAO (曹世权), Siqi HE (何思奇), Chenzhong DONG (董晨钟), Yanbiao FU (符彦飙). Effect of dielectronic recombination on charge-state distribution in laser-produced plasma based on steady-state collisional-radiative models[J]. Plasma Science and Technology, 2020, 22(10): 105001. DOI: 10.1088/2058-6272/ab9889 |
[1] |
Burgess A 1964 Astrophys. J. 139 776
|
[2] |
Schippers S et al 2011 Phys. Rev. A 83 012711
|
[3] |
Dubau J and Volonte S 1980 Rep. Prog. Phys. 43 199
|
[4] |
Zatsarinny O et al 2003 Astron. Astrophys. 412 587
|
[5] |
Jacobs V L et al 1989 Phys. Rev. A 39 2411
|
[6] |
Peter T et al 1986 Phys. Rev. Lett. 57 1859
|
[7] |
Fu Y B et al 2011 Phys. Rev. A 83 062708
|
[8] |
Li B W et al 2012 Phys. Rev. A 85 052706
|
[9] |
Kwon D H 2018 J. Quant. Spectrosc. Radiat. Transfer 208 64
|
[10] |
Safronova U I et al 2008 J. Phys. B: At. Mol. Opt. Phys. 42 015001
|
[11] |
Preval S P et al 2017 J. Phys. B: At. Mol. Opt. Phys. 50 105201
|
[12] |
Song M Y et al 2008 J. Phys. Soc. Japan 77 064302
|
[13] |
Su M G et al 2017 Sci. Rep. 7 45212
|
[14] |
Duston D and Davis J 1980 Phys. Rev. A 21 1664
|
[15] |
White J 2006 Opening the extreme ultraviolet lithography source bottleneck: developing a 13.5 nm laser-produced plasma source for the semiconductor industry PhD Thesis University College Dublin, Dublin, Ireland
|
[16] |
Colombant D and Tonon G F 1973 J. Appl. Phys. 44 3524
|
[17] |
Burdt R A et al 2010 J. Appl. Phys. 107 043303
|
[18] |
White J et al 2005 J. Appl. Phys. 98 113301
|
[19] |
Su M G et al 2017 Phys Plasmas 24 043302
|
[20] |
Chowdhury A et al 2005 Pramana—J. Phys. 64 141
|
[21] |
Louzon E et al 2012 High Energy Density Phys. 8 81
|
[22] |
Sinha B K et al 1999 J. Plasma Fusion Res. Ser. 2 406
|
[23] |
Gupta G P and Sinha B K 1996 J. Appl. Phys. 79 619
|
[24] |
Gupta G P and Sinha B K 1997 Phys. Rev. E 56 2104
|
[25] |
Gu M F 2008 Can. J. Phys. 86 675
|
[26] |
Cao S Q et al 2018 Phys. Plasmas 25 023304
|
[27] |
Huddlestone R H and Leonard S L 1965 Plasma Diagnostic Techniques (New York: Academic)
|
[28] |
Kolb A C et al 1964 Phys. Fluids 7 519
|
[29] |
Peacock N J and Pease R S 1969 J. Phys. D: Appl. Phys.2 1705
|
[30] |
Zelʹdovich Y B and Raizer Y P 1966 Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena (New York: Academic)
|
[31] |
Atomic Data and Analysis Structure (ADAS) (http://open.adas.ac.uk/)
|
[1] | A A LASHIN, T M ALLAM, H A EL-SAYED, Kamal M AHMED, S A WARD, H M SOLIMAN, M A ABOUELATTA. Magnetic field induction and magnetic force distribution profiles in plasma focus discharge device[J]. Plasma Science and Technology, 2021, 23(7): 75405-075405. DOI: 10.1088/2058-6272/ac01d2 |
[2] | Rishi VERMA, Ekansh MISHRA, Prosenjit DHANG, Basanta Kumar DAS, Manraj MEENA, Lakshman RONGALI, Archana SHARMA. Development and performance characterization of a compact plasma focus based portable fast neutron generator[J]. Plasma Science and Technology, 2020, 22(11): 115506. DOI: 10.1088/2058-6272/abb079 |
[3] | K J ZHAO (赵开君), J Q DONG (董家齐), J Q LI (李继全), LW YAN (严龙文). A brief review: experimental investigation of zonal flows and geodesic acoustic modes in fusion plasmas[J]. Plasma Science and Technology, 2018, 20(9): 94006-094006. DOI: 10.1088/2058-6272/aad382 |
[4] | Neda SHAMSIAN, Babak SHIRANI BIDABADI, Hosein PIRJAMADI. Development of a radiographic method for measuring the discrete spectrum of the electron beam from a plasma focus device[J]. Plasma Science and Technology, 2017, 19(7): 75101-075101. DOI: 10.1088/2058-6272/aa632e |
[5] | MIAO Feng (苗峰), ZHENG Xianjun (曾宪俊), DENG Baiquan (邓柏权). Nuclear Fusion Within Extremely Dense Plasma Enhanced by Quantum Particle Waves[J]. Plasma Science and Technology, 2015, 17(5): 366-371. DOI: 10.1088/1009-0630/17/5/03 |
[6] | M. A. MOHAMMADI, S. HEDYEH. Study of Current Sheath Velocity and Its Distribution Using Tridimensional Magnetic Probe in Sahand Plasma Focus[J]. Plasma Science and Technology, 2015, 17(5): 353-357. DOI: 10.1088/1009-0630/17/5/01 |
[7] | YUAN Guoliang(袁国梁), YANG Qingwei(杨青巍), YANG Jinwei(杨进蔚), SONG Xianying(宋先瑛), LI Xu(李旭), WU Huajian(吴华剑), WANG Zhiqiang(王志强). Fusion Neutron Flux Detector for the ITER[J]. Plasma Science and Technology, 2014, 16(2): 168-171. DOI: 10.1088/1009-0630/16/2/14 |
[8] | I. A. KHAN, R. S. RAWAT, R. VERMA, G. MACHARAGA, R. AHMAD, Z. A. UMAR, et al.. Role of Ion Beam Irradiation and Annealing Effect on the Deposition of AlON Nanolayers by Using Plasma Focus Device[J]. Plasma Science and Technology, 2013, 15(11): 1127-1135. DOI: 10.1088/1009-0630/15/11/10 |
[9] | K. Mikaili AGAH, M. GHORANNEVISS, M. K. SALEM, A. Salar ELAHI, S. MOHAMMADI, R. ARVIN. Increase of Diagnostic Mirror Lifetime Using TiN Coated Stainless Steel by Using a Plasma Focus Device[J]. Plasma Science and Technology, 2013, 15(5): 485-488. DOI: 10.1088/1009-0630/15/5/18 |
[10] | Heinrich HORA, George H. MILEY, HE Xiantu, ZHENG Wudi, Paraskevas LALOUSIS, Istvan F?OLDES, Sandor SZATMARI, Stavros MOUSTAIZIS, Reynaldo CASTILLO. Ultrahigh Acceleration of Plasma Blocks by Nonlinear Forces for Side-On Laser Ignition of Solid Density Fusion Fuel[J]. Plasma Science and Technology, 2013, 15(5): 420-424. DOI: 10.1088/1009-0630/15/5/05 |
1. | Song, Y., Zhao, J., Zheng, B. et al. Atmospheric pressure plasma jet deposition of TiO2 layer on alumina/epoxy to improve electrical properties. Plasma Science and Technology, 2025, 27(1): 015501. DOI:10.1088/2058-6272/ad8f0b | |
2. | Dong, M., Yang, Z., Xia, G. et al. Enhance the Surface Insulation Properties of EP Materials via Plasma and Fluorine-Containing Coupling Agent Co-Fluorinated Graphene. Nanomaterials, 2024, 14(24): 2009. DOI:10.3390/nano14242009 | |
3. | Wei, M., Gao, W., Zhao, D. et al. Research on the Electrical and Hydrophobicity Properties of BN/RTV Composite Materials by Plasma Treatment. Springer Proceedings in Physics, 2024. DOI:10.1007/978-981-97-2245-7_19 | |
4. | Yanze, S., Qijun, D., Jun, X. et al. Plasma Etching Constructs Step Gradient Surface Conductivity to Improve the Insulation Properties of Epoxy Resin. IEEE Transactions on Dielectrics and Electrical Insulation, 2024, 31(5): 2603-2612. DOI:10.1109/TDEI.2024.3403535 | |
5. | Ruan, H., Xie, Q., Duan, Q. et al. Regulation Method and Mechanism of Functionalized Modified Nano Filler on Electrical Properties of Epoxy Resin. Engineering Materials, 2024. DOI:10.1007/978-981-99-9050-4_4 | |
6. | Duan, Q., Song, Y., Shao, S. et al. Enhanced surface-insulating performance of EP composites by doping plasma-fluorinated ZnO nanofiller. Plasma Science and Technology, 2023, 25(10): 104004. DOI:10.1088/2058-6272/acdb53 | |
7. | Wang, T., Wang, X., Yang, W. et al. Formation of wettability gradient surface on polyethylene terephthalate by maskless argon microplasma jet writing for droplet self-driven application. Applied Surface Science, 2023. DOI:10.1016/j.apsusc.2023.157383 | |
8. | Duan, Q., Xia, G., Song, Y. et al. Plasma Fluorinated Nano-SiO2 Enhances the Surface Insulation Performance of Glass Fiber Reinforced Polymer. Nanomaterials, 2023, 13(5): 906. DOI:10.3390/nano13050906 | |
9. | Li, F., Wei, P., Chu, J. et al. Promotion on Surface Charge Dissipation by Surface Functionally Graded Modification of SDBD. 2023. DOI:10.1109/ICEMPE57831.2023.10139613 | |
10. | Cui, X., Shen, J., Zhou, Y. et al. Nanosecond pulse-driven atmospheric-pressure plasmas for polymer surface modifications: Wettability performance, insulation evaluation and mechanisms. Applied Surface Science, 2022. DOI:10.1016/j.apsusc.2022.153640 | |
11. | Xie, Q., Duan, Q., Xia, G. et al. Effect of liquid diffusion and segregation on GFRP insulation performance in typical hygrothermal environment. Composites Part B: Engineering, 2022. DOI:10.1016/j.compositesb.2022.110152 | |
12. | Yan, J., Liang, G., Duan, Q. et al. Effect of Plasma Surface Step Gradient Silicon Deposition on Flashover Properties of Epoxy Resin | [等离子体表面阶跃型梯度硅沉积对环氧树脂闪络性能的影响]. Diangong Jishu Xuebao/Transactions of China Electrotechnical Society, 2022, 37(9): 2377-2387. DOI:10.19595/j.cnki.1000-6753.tces.210476 | |
13. | Yan, J., Liang, G., Lian, H. et al. Improving the surface flashover performance of epoxy resin by plasma treatment: A comparison of fluorination and silicon deposition under different modes. Plasma Science and Technology, 2021, 23(11): 115501. DOI:10.1088/2058-6272/ac15ee | |
14. | Mei, D., Zhang, S., Tang, J. Special issue on selected papers from HVDP 2020. Plasma Science and Technology, 2021, 23(6): 060101. DOI:10.1088/2058-6272/ac02ab |