Advanced Search+
Longfei JING (景龙飞), Shaoen JIANG (江少恩), Longyu KUANG (况龙钰), Lu ZHANG (张璐), Jianhua ZHENG (郑建华), Liling LI (李丽灵), Zhiwei LIN (林雉伟), Hang LI (黎航), Tianxuan HUANG (黄天晅), Yunbao HUANG (黄运保). An improved view-factor method including plasma filling for angular distribution of radiation temperature from a laser-driven hohlraum[J]. Plasma Science and Technology, 2020, 22(10): 105202. DOI: 10.1088/2058-6272/ab9a25
Citation: Longfei JING (景龙飞), Shaoen JIANG (江少恩), Longyu KUANG (况龙钰), Lu ZHANG (张璐), Jianhua ZHENG (郑建华), Liling LI (李丽灵), Zhiwei LIN (林雉伟), Hang LI (黎航), Tianxuan HUANG (黄天晅), Yunbao HUANG (黄运保). An improved view-factor method including plasma filling for angular distribution of radiation temperature from a laser-driven hohlraum[J]. Plasma Science and Technology, 2020, 22(10): 105202. DOI: 10.1088/2058-6272/ab9a25

An improved view-factor method including plasma filling for angular distribution of radiation temperature from a laser-driven hohlraum

Funds: This work was supported by National Natural Science Foundation of China (Nos. 11775204, 11805186, 11805187) and Presidential Foundation of China Academy of Engi- neering Physics (No. YZJJLX2018011).
More Information
  • Received Date: February 22, 2020
  • Revised Date: June 04, 2020
  • Accepted Date: June 04, 2020
  • Angular distribution of radiation temperature from a laser-driven hohlraum is vital for investigations on the radiation field inside the hohlraum, code validation, and predication of drive on the capsule in indirect-drive inertial confinement fusion. A modified version of the view-factor method including plasma filling is proposed, which improves the accuracy of the description of angular distribution of radiation temperature. Firstly, the radial velocity of the gold bubble motion is scaled from a simple data-based model in a gas-filled hohlraum experiment performed on a hundreds of kJ laser facility in China. Then, an equivalent radiative volume model is advanced to approximately characterize the contribution of the blow-off bubble in the new view-factor method incorporate into IRAD3D. The simulation shows reasonable agreement with experimental measurements in a gas-filled hollow hohlraum. Furthermore, the influence of the electron density and temperature distribution, and bubble velocity, is analyzed. The value of the method is that it can be used as an approximate 'first-look' at hohlraum energy balance prior to a more detailed radiation hydrodynamic modeling.
  • [1]
    Lindl J 1995 Phys. Plasmas 2 3933
    [2]
    Lindl J D et al 2004 Phys. Plasmas 11 339
    [3]
    Atzeni S and Meyer-ter-Vehn J 2004 The Physics of Inertial Fusion (Clarendon: Oxford University Press)
    [4]
    Lindl J et al 2014 Phys. Plasmas 21 020501
    [5]
    Basko M 1996 Phys. Plasmas 3 4148
    [6]
    Rosen M D 2012 National Ignition Campaign (NIC) hohlraums: I. Symmetry & coupling LLNL-PRES-557838A NIC
    [7]
    Moses E I et al 2016 Fusion Sci. Technol. 69 1
    [8]
    Decker C et al 1997 Phys. Rev. Lett. 79 1491
    [9]
    Meezan N B et al 2010 Phys. Plasmas 17 056304
    [10]
    Dewald E L et al 2004 Rev. Sci. Instrum. 75 3759
    [11]
    Li Z C et al 2010 Rev. Sci. Instrum. 81 073504
    [12]
    Pu Y D et al 2018 Plasma Phys. Control. Fusion 60 085017
    [13]
    MacFarlane J J et al 2005 Phys. Rev. E 72 066403
    [14]
    Cohen D H et al 2004 Phys. Plasmas 11 2702
    [15]
    Jones O S et al 2012 Phys. Plasmas 19 056315
    [16]
    MacLaren S A et al 2014 Phys. Rev. Lett. 112 105003
    [17]
    Berzak Hopkins L F et al 2015 Phys. Plasmas 22 056318
    [18]
    Zhang H et al 2016 Phys. Plasmas 23 082708
    [19]
    Jing L F et al 2015 Phys. Plasmas 22 022709
    [20]
    Sigel R et al 1988 Phys. Rev. A 38 5779
    [21]
    Murakami M and Meyer-ter-Vehn J 1991 Nucl. Fusion 31 1315
    [22]
    Murakami M and Meyer-ter-Vehn J 1991 Nucl. Fusion 31 1333
    [23]
    Tsakiris G D 1992 Phys. Fluids B 4 992
    [24]
    Srivastava M K, Kumar V and Menon S V G 2000 Phys.Plasmas 7 2616
    [25]
    MacFarlane J J 2003 J. Quant. Spectrosc. Radiat. Transfer 81 287
    [26]
    Cohen D H, Landen O L and MacFarlane J J 2005 Phys.Plasmas 12 122703
    [27]
    Peterson J L et al 2014 Phys. Plasmas 21 072712
    [28]
    Lan K et al 2016 Matter Radiat. Extremes 1 8
    [29]
    Li H Y et al 2015 Fusion Eng. Des. 100 596
    [30]
    Jing L F et al 2017 Nucl. Fusion 57 046020
    [31]
    Jing L F et al 2018 Nucl. Fusion 58 096017
    [32]
    Zhang H S et al 2015 High Power Laser Part. Beams 27 032011 (in Chinese)
    [33]
    Xie X F et al 2016 Phys. Plasmas 23 112701
    [34]
    MacFarlane J J 1998 Development of a Time-Dependent View Factor Code for Studying Radiation Symmetry in ICF Hohlraums UWFDM-1061 Madison Wisconsin: University of Wisconsin
    [35]
    Jones O S et al 2004 Phys. Rev. Lett. 93 065002
    [36]
    Schnittman J D and Craxton R S 1996 Phys. Plasmas 3 3786
    [37]
    Kauffman R L et al 1994 Phys. Rev. Lett. 73 2320
    [38]
    Suter L J et al 1996 Phys. Plasmas 3 2057
    [39]
    Schneider M B et al 2006 Phys. Plasmas 13 112701
    [40]
    Bourgade J L et al 2018 Plasma Phys. Control. Fusion 60 025006
    [41]
    Callahan D A et al 2018 Phys. Plasmas 25 056305
    [42]
    Ralph J E et al 2018 Phys. Plasmas 25 082701
    [43]
    Guo L et al 2017 High Power Laser Part. Beams 29 120102 (in Chinese)
    [44]
    Li S W et al 2018 Sci. Sin. Phys. Mech. Astron. 48 065202 (in Chinese)
    [45]
    Guo L et al 2019 Nucl. Fusion 59 016002
    [46]
    Ress D et al 1990 Phys. Fluids B 2 2448
    [47]
    Zheng W G et al 2017 Matter Radiat. Extremes 2 243
    [48]
    Jiang S E et al 2019 Nucl. Fusion 59 032006
    [49]
    Zhao H et al 2019 Matter Radiat. Extremes 4 055201
    [50]
    Gong T et al 2019 Matter Radiat. Extremes 4 055202
    [51]
    Rosen M D 2005 Fundamentals of ICF Hohlraums UCRL-PROC-215898 Livermore: Lawrence Livermore National Lab
    [52]
    Jones O S et al 2007 Phys. Plasmas 14 056311
    [53]
    Song T M et al 2013 Plasma Sci. Technol. 15 1108
    [54]
    Zhang H S et al 2018 Phys. Plasmas 25 022703
    [55]
    Zel’dovich Y N and Raizer Y P 1966 Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena (New York: Academic)
    [56]
    Zhang J and Chang T Q 2004 Fundaments of the Target Physics for Laser Fusion (Beijing: National Defend Industry Press) (in Chinese)
    [57]
    Yang D et al 2014 Rev. Sci. Instrum. 85 033504
    [58]
    Zhao Y Q et al 2014 Phys. Plasmas 21 072714

Catalog

    Article views (136) PDF downloads (129) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return