Advanced Search+
Baojun WANG (王宝军), Shunshun ZHU (朱顺顺), Bin GUO (郭斌). Surface plasmon polaritons in plasma- dielectric-magnetic plasma structure[J]. Plasma Science and Technology, 2020, 22(10): 105002. DOI: 10.1088/2058-6272/ab9e5c
Citation: Baojun WANG (王宝军), Shunshun ZHU (朱顺顺), Bin GUO (郭斌). Surface plasmon polaritons in plasma- dielectric-magnetic plasma structure[J]. Plasma Science and Technology, 2020, 22(10): 105002. DOI: 10.1088/2058-6272/ab9e5c

Surface plasmon polaritons in plasma- dielectric-magnetic plasma structure

Funds: This work was supported by National Natural Science Foundation of China (Nos. 11975175 and 11575135) and the Fundamental Research Funds for the Central Universities (WUT: 2020IB021).
More Information
  • Received Date: May 12, 2020
  • Revised Date: June 15, 2020
  • Accepted Date: June 17, 2020
  • The properties of surface plasmon polaritons (SPPs) excited in the plasma-dielectric-magnetic plasma structure are investigated theoretically. Both the normal and the absorbing dispersion relations of SPPs are derived and presented for transverse-magnetic polarization. The influences of the external magnetic field, collision frequency of plasma, background material dielectric constant, and thickness on the characteristics of SPPs are explored and discussed. Results show that these factors greatly alter the properties of SPPs. The results imply that the locations and propagation length of SPPs can be tuned. In addition, the results also show that a one-way dispersion relation of SPPs can be realized in the low-frequency regions when the external magnetic field is introduced.
  • [1]
    Maier S A 2007 Plasmonics: Fundamentals and Applications (New York: Springer)
    [2]
    Pitarke J M et al 2007 Rep. Prog. Phys. 70 1
    [3]
    Zhang J X, Zhang L D and Xu W 2012 J. Phys. D: Appl. Phys.45 113001
    [4]
    Gramotnev D K and Bozhevolnyi S I 2010 Nat. Photonics 4 83
    [5]
    Schuller J A et al 2010 Nat. Mater. 9 193
    [6]
    Anwar R S, Ning H S and Mao L F 2018 Digit. Commun.Netw. 4 244
    [7]
    Tang L et al 2008 Nat. Photonics 2 226
    [8]
    Remesh V et al 2018 Appl. Phys. Lett. 113 211101
    [9]
    Pillai S et al 2007 J. Appl. Phys. 101 093105
    [10]
    Nie S M and Emory S R 1997 Science 275 1102
    [11]
    Anker J N et al 2008 Nat. Mater. 7 442
    [12]
    Sakai O, Sakaguchi T and Tachibana K 2005 Appl. Phys. Lett.87 241505
    [13]
    Guo B 2009 Phys. Plasmas 16 043508
    [14]
    Guo B 2009 Plasma Sci. Technol. 11 18
    [15]
    Feng L et al 2008 Appl. Phys. Lett. 93 231105
    [16]
    Zhang H F et al 2012 Phys. Plasmas 19 022103
    [17]
    Lehmann G and Spatschek K H 2016 Phys. Rev. Lett. 116 225002
    [18]
    Qi L M et al 2015 Plasma Sci. Technol. 17 4
    [19]
    Zhang H F and Chen Y Q 2017 Phys. Plasmas 24 042116
    [20]
    Pourali N and Bahador H 2019 Phys. Plasmas 26 013515
    [21]
    Chen W C, Liu Y L and Guo B 2019 Phys. Plasmas 26 052110
    [22]
    Liu Y L, Chen W C and Guo B 2019 AIP Adv. 9 075111
    [23]
    Sakai O and Tachibana K 2012 Plasma Sources Sci. Technol.21 013001
    [24]
    Guo B 2013 Chin. Phys. Lett. 30 105201
    [25]
    Guo B 2012 J. Electromagn. Waves Appl. 26 2445
    [26]
    Lazar M et al 2009 Phys. Plasmas 16 052102
    [27]
    Xu X et al 2008 Appl. Phys. Lett. 92 011501
    [28]
    Majedi S, Khorashadizadeh S M and Niknam A R 2018 Eur.Phys. J. Plus 133 77
    [29]
    Shahmansouri M, Aboltaman R and Misra A P 2018 Phys.Lett. A 382 2133
    [30]
    Qi L M, Sun D D and Shah S M A 2019 Appl. Phys. Express 12 062004
    [31]
    Zhu S S, Wang B J and Guo B 2020 Superlattices Microstruct.142 106516
    [32]
    Hu B, Zhang Y and Wang Q J 2015 Nanophotonics 4 383
    [33]
    Ginzburg V L 1970 The Propagation of Electromagnetic Waves in Plasmas vol 2 (Oxford: Pergamon)
    [34]
    Jablan M, Buljan H and Soljačić M 2009 Phys. Rev. B 80 245435
    [35]
    Kushwaha M S and Halevi P 1987 Phys. Rev. B 36 5960
    [36]
    Hu B, Wang Q J and Zhang Y 2012 Opt. Lett. 37 1895
    [37]
    Raether H 1988 Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Berlin: Springer)
    [38]
    Aminabad Z A, Barvestani J and Vala A S 2019 Superlattices Microstruct. 130 221
    [39]
    Jin D F et al 2016 Nat. Commun. 7 13486
    [40]
    Zhang Y et al 2017 Phys. Rev. B 96 045104
    [41]
    Ustyantsev M A et al 2006 Opt. Commun. 260 583
  • Related Articles

    [1]Dandan ZOU, Chensheng TU, Chunmei CUI. Helical streamers guided by surface electromagnetic standing waves[J]. Plasma Science and Technology, 2023, 25(7): 072001. DOI: 10.1088/2058-6272/acb876
    [2]N Yu BABAEVA, G V NAIDIS, V F TARASENKO, D A SOROKIN, Cheng ZHANG, Tao SHAO. Evolution of ionization waves in a multi-pulsed plasma jet: the role of memory charges[J]. Plasma Science and Technology, 2023, 25(3): 035406. DOI: 10.1088/2058-6272/aca18e
    [3]Kai ZHAO (赵凯), Yongxin LIU (刘永新), Quanzhi ZHANG (张权治), Demetre J ECONOMOU, Younian WANG. Magnetic probe diagnostics of nonlinear standing waves and bulk ohmic electron power absorption in capacitive discharges[J]. Plasma Science and Technology, 2021, 23(11): 115404. DOI: 10.1088/2058-6272/ac1cce
    [4]Bowen LI (李博文), Zhibin WANG (王志斌), Qiuyue NIE (聂秋月), Xiaogang WANG (王晓钢), Fanrong KONG (孔繁荣), Zhenyu WANG (王振宇). Collision effects on propagation characteristics of electromagnetic waves in a sub-wavelength plasma slab of partially ionized dense plasmas[J]. Plasma Science and Technology, 2018, 20(1): 14015-014015. DOI: 10.1088/2058-6272/aa84ab
    [5]Xiaoqiong WEN (温小琼), Qian LI (李倩), Jingsen LI (李井森), Chunsheng REN (任春生). Quantitative relationship between the maximum streamer length and discharge voltage of a pulsed positive streamer discharge in water[J]. Plasma Science and Technology, 2017, 19(8): 85401-085401. DOI: 10.1088/2058-6272/aa6bf0
    [6]LIU Zhiwei (刘智惟), BAO Weimin (包为民), LI Xiaoping (李小平), SHI Lei (石磊), LIU Donglin (刘东林). Influences of Turbulent Reentry Plasma Sheath on Wave Scattering and Propagation[J]. Plasma Science and Technology, 2016, 18(6): 617-626. DOI: 10.1088/1009-0630/18/6/07
    [7]LIU Zhiwei (刘智惟), BAO Weimin (包为民), LI Xiaoping (李小平), LIU Donglin (刘东林), ZHOU Hui (周辉). Influence of Plasma Pressure Fluctuation on RF Wave Propagation[J]. Plasma Science and Technology, 2016, 18(2): 131-137. DOI: 10.1088/1009-0630/18/2/06
    [8]Djelloul MENDIL, Hadj LAHMAR, Laifa BOUFENDI. Spatial Evolution Study of EEDFs and Plasma Parameters in RF Stochastic Regime by Langmuir Probe[J]. Plasma Science and Technology, 2014, 16(9): 837-842. DOI: 10.1088/1009-0630/16/9/06
    [9]LU Wenqi (陆文琪), JIANG Xiangzhan (蒋相站), LIU Yongxin (刘永新), YANG Shuo (杨烁), et al. Improved Double-Probe Technique for Spatially Resolved Diagnosis of Dual-Frequency Capacitive Plasmas[J]. Plasma Science and Technology, 2013, 15(6): 511-515. DOI: 10.1088/1009-0630/15/6/05
    [10]LI Bin, LI Hong, CHEN Zhipeng, XIE Jinlin, FENG Guangyao, LIU Wandong. Experimental and Simulational Studies on the Theoretical Model of the Plasma Absorption Probe[J]. Plasma Science and Technology, 2010, 12(5): 513-518.

Catalog

    Article views (187) PDF downloads (192) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return