Advanced Search+
Liu CHEN (陈骝), Fulvio ZONCA, Haotian CHEN (陈昊天). Unexpanded nonlinear electromagnetic gyrokinetic equations for magnetized plasmas[J]. Plasma Science and Technology, 2020, 22(10): 102001. DOI: 10.1088/2058-6272/aba187
Citation: Liu CHEN (陈骝), Fulvio ZONCA, Haotian CHEN (陈昊天). Unexpanded nonlinear electromagnetic gyrokinetic equations for magnetized plasmas[J]. Plasma Science and Technology, 2020, 22(10): 102001. DOI: 10.1088/2058-6272/aba187

Unexpanded nonlinear electromagnetic gyrokinetic equations for magnetized plasmas

Funds: This work was supported by National Natural Science Fundation of China (Nos. 11235009 and 11905097), and Fundamental Research Fund for Chinese Central Universities (No. 2019FZA3003). This work was also carried out within the framework of the EUROfusion Consortium and received funding from Euratom research and training programme 2014–2018 and 2019–2020 under Grant Agreement No. 633053 (Project No. WP19-ER/ENEA-05).
More Information
  • Received Date: May 05, 2020
  • Revised Date: June 28, 2020
  • Accepted Date: June 29, 2020
  • Nonlinear electromagnetic gyrokinetic equations have been constructed without expanding the field variables into background and finite but small-amplitude fluctuating components. At the long-wavelength limit, these unexpanded nonlinear gyrokinetic equations recover the well-known drift-kinetic equations. At the expanded limit, they recover the usual nonlinear gyrokinetic equations. These equations can therefore be applied to long-term simulations covering from microscopic to macroscopic spatial scales.
  • [1]
    Hazeltine R D 1973 Plasma Phys. 15 77
    [2]
    Kulsrud R M 1983 Basic Plasma Physics I (Handbook of Plasma Physics vol 1) ed A A Galeev and R N Sudan (Amsterdam: North-Holland) pp 115–46
    [3]
    Catto P J 1978 Plasma Phys. 20 719
    [4]
    Antosen T M Jr and Lane B 1980 Phys. Fluids 23 1205
    [5]
    Catto P J, Tang W M and Baldwin D E 1981 Plasma Phys.23 639
    [6]
    Frieman E A and Chen L 1982 Phys. Fluids 25 502
    [7]
    Sugama H 2000 Phys. Plasmas 7 466
    [8]
    Brizard A J and Hahm T S 2007 Rev. Mod. Phys. 79 421
    [9]
    Chen Y and Parker S E 2009 Phys. Plasmas 16 052305
    [10]
    Chen L et al 2019 Plasma Phys. Control. Fusion 61 035004
    [11]
    Porazik P and Lin Z 2011 Comm. Comput. Phys. 10 899
    [12]
    Falessi M V and Zonca F 2019 Phys. Plasmas 26 022305
    [13]
    Heikkinen J A et al 2008 J. Comput. Phys. 227 5582
    [14]
    Chang C S et al 2009 Phys. Plasmas 16 056108
    [15]
    Rastovic D 2008 J. Fusion Energ. 27 285
  • Related Articles

    [1]Tao WANG, Shizhao WEI, Sergio BRIGUGLIO, Gregorio VLAD, Fulvio ZONCA, Zhiyong QIU. Nonlinear dynamics of the reversed shear Alfvén eigenmode in burning plasmas[J]. Plasma Science and Technology, 2024, 26(5): 053001. DOI: 10.1088/2058-6272/ad15e0
    [2]Jiting OUYANG (欧阳吉庭), Ben LI (李犇), Feng HE (何锋), Dong DAI (戴栋). Nonlinear phenomena in dielectric barrier discharges: pattern, striation and chaos[J]. Plasma Science and Technology, 2018, 20(10): 103002. DOI: 10.1088/2058-6272/aad325
    [3]Zhiyong QIU, Liu CHEN, Fulvio ZONCA. Kinetic theory of geodesic acoustic modes in toroidal plasmas: a brief review[J]. Plasma Science and Technology, 2018, 20(9): 94004-094004. DOI: 10.1088/2058-6272/aab4f0
    [4]Ding LI (李定), Wen YANG (杨文), Huishan CAI (蔡辉山). On theoretical research for nonlinear tearing mode[J]. Plasma Science and Technology, 2018, 20(9): 94002-094002. DOI: 10.1088/2058-6272/aabde4
    [5]Jiaqi DONG (董家齐), Xiaogang WANG (王晓钢), Liu CHEN (陈骝). Special issue on instabilities and nonlinear phenomena in plasmas—in memory of professor Changxuan Yu[J]. Plasma Science and Technology, 2018, 20(9): 90101-090101. DOI: 10.1088/2058-6272/aad0ed
    [6]Lu WANG (王璐), Shuitao PENG (彭水涛), P H DIAMOND. Gyrokinetic theory of turbulent acceleration and momentum conservation in tokamak plasmas[J]. Plasma Science and Technology, 2018, 20(7): 74004-074004. DOI: 10.1088/2058-6272/aab5bc
    [7]Dogan MANSUROGLU, Ilker Umit UZUN-KAYMAK. Experimental analysis on the nonlinear behavior of DC barrier discharge plasmas[J]. Plasma Science and Technology, 2017, 19(1): 15401-015401. DOI: 10.1088/1009-0630/19/1/015401
    [8]JIANG Peng (江澎), LIN Zhihong (林志宏), Ihor HOLOD, XIAO Chijie (肖池阶). The Implementation of Magnetic Islands in Gyrokinetic Toroidal Code[J]. Plasma Science and Technology, 2016, 18(2): 126-130. DOI: 10.1088/1009-0630/18/2/05
    [9]KONG Lingbao (孔令宝), WANG Hongyu (王虹宇), HOU Zhiling (侯志灵), JIN Haibo (金海波). The Self-Consistent Nonlinear Theory of Charged Particle Beam Acceleration by Slowed Circularly Polarized Electromagnetic Waves[J]. Plasma Science and Technology, 2013, 15(12): 1174-1177. DOI: 10.1088/1009-0630/15/12/02
    [10]GAO Xiang (高翔), ZHANG Tao (张涛), HAN Xiang (韩翔), ZHANG Shoubiao (张寿彪), et al.. Observation of Pedestal Plasma Turbulence on EAST Tokamak[J]. Plasma Science and Technology, 2013, 15(8): 732-737. DOI: 10.1088/1009-0630/15/8/03
  • Cited by

    Periodical cited type(2)

    1. Zheng, B., Wang, L., Zhang, J. et al. Integrated design and performance optimization of three-electrode sliding discharge plasma power supply. Plasma Science and Technology, 2024, 26(11): 115503. DOI:10.1088/2058-6272/ad6814
    2. Iranshahi, K., Defraeye, T., Rossi, R.M. et al. Electrohydrodynamics and its applications: Recent advances and future perspectives. International Journal of Heat and Mass Transfer, 2024. DOI:10.1016/j.ijheatmasstransfer.2024.125895

    Other cited types(0)

Catalog

    Article views (346) PDF downloads (408) Cited by(2)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return