Citation: | Trung Nguyen TRAN, Bounyang OANTHAVINSAK, Shinichiro KADO, Hiroto MATSUURA. Effect of insulating oil covering electrodes on the characteristics of a dielectric barrier discharge[J]. Plasma Science and Technology, 2020, 22(11): 115401. DOI: 10.1088/2058-6272/aba23c |
[1] |
Matsuura H et al 2014 Plasma Med. 4 29
|
[2] |
Takemura Y et al 2014 Plasma Med. 4 89
|
[3] |
Teschke M et al 2005 IEEE Trans. Plasma Sci. 33 310
|
[4] |
Kersten H et al 2001 Vacuum 63 385
|
[5] |
Kongmany S et al 2013 J. Phys.: Conf. Ser. 441 012006
|
[6] |
Nguyen T T et al 2019 Plasma Res. Express 1 015009
|
[7] |
Nguyen D B et al 2019 IEEE Trans. Plasma Sci. 47 2004
|
[8] |
Sunagawa T et al 2017 Mem. Fukui Univ. Technol. 47 105 (in Japanese)
|
[9] |
Hayashi S I et al 2019 J. Phys.: Conf. Ser. 1305 012031
|
[10] |
Li Q et al 2009 Appl. Phys. Lett. 95 141502
|
[11] |
Mericam-Bourdet N et al 2009 J. Phys. D: Appl. Phys. 42 055207
|
[12] |
Laroussi M and Lu X 2005 Appl. Phys. Lett. 87 113902
|
[13] |
Jiang N, Ji A L and Cao Z X 2009 J. Appl. Phys. 106 013308
|
[14] |
Oh J S, Walsh J L and Bradley J W 2012 Plasma Sources Sci.Technol. 21 034020
|
[15] |
Mitsugi F, Kusumegi S and Kawasaki T 2019 IEEE Trans.Plasma Sci. 47 1057
|
[16] |
Takemura Y et al 2009 IEEE Trans. Plasma Sci. 37 1604
|
[17] |
Allam T M et al 2014 Energy Power Eng. 6 437
|
[18] |
Laroussi M 2009 IEEE Trans. Plasma Sci. 37 714
|
[19] |
Dorai R and Kushner M J 2003 J. Phys. D: Appl. Phys. 36 666
|
[20] |
Tran N T et al 2019 Suppress of plasma source temperature increment for long time irradiating with argon jet Proc. 34th Int. Conf. on Phenomena in Ionized Gases & 10th Int. Conf.on Reactive Plasmas (Sapporo (Sapporo Education and Culture Hall) 2019)
|
[21] |
Tran N T et al 2019 Improvement of discharge performance for long time irradiating with atmospheric plasma gas discharge Proc. 41st Int. Symp. on Dry Process (Hiroshima, Japan)
|
[22] |
Ito T 2017 Jpn. J. Appl. Phys. 56 06GG02
|
[23] |
Oh J S et al 2016 J. Photopolym. Sci. Technol. 29 427
|
[24] |
Ogawa K et al 2019 Appl. Phys. Express 12 036001
|
[25] |
Uchida G et al 2018 Jpn. J. Appl. Phys. 57 0102B4
|
[26] |
Tian W and Kushner M J 2014 J. Phys. D: Appl. Phys. 47 165201
|
[27] |
Matsuura H et al 2019 Application of chemical probes to study on radical transportation inside of flexible tubes Proc. 34th Int. Conf. on Phenomena in Ionized Gases & 10th Int. Conf. on Reactive Plasmas (Sapporo (Sapporo Education and Culture Hall) 2019)
|
[28] |
Ouanthavinsak B et al 2019 Expansion of atmospheric pressure plasma a glass plate Proc. 11th Asia-Pacific Int. Symp. on the Basics and Applications of Plasma Technology (Kanazawa (The Kanazawa Chamber of Commerce & Industry) 2019)
|
[29] |
van Gaens W and Bogaerts A 2014 Plasma Sources Sci.Technol. 23 035015
|
[30] |
Pandis S N and Seinfeld J H 1989 J. Geophys. Res. 94 1105
|
[1] | Zelong ZHANG (张泽龙), Jie SHEN (沈洁), Cheng CHENG (程诚), Zimu XU (许子牧), Weidong XIA (夏维东). Generation of reactive species in atmospheric pressure dielectric barrier discharge with liquid water[J]. Plasma Science and Technology, 2018, 20(4): 44009-044009. DOI: 10.1088/2058-6272/aaa437 |
[2] | Pan CHEN (陈攀), Jun SHEN (沈俊), Tangchun RAN (冉唐春), Tao YANG (杨涛), Yongxiang YIN (印永祥). Investigation of operating parameters on CO2 splitting by dielectric barrier discharge plasma[J]. Plasma Science and Technology, 2017, 19(12): 125505. DOI: 10.1088/2058-6272/aa8903 |
[3] | Jianyu FENG (冯建宇), Lifang DONG (董丽芳), Caixia LI (李彩霞), Ying LIU (刘莹), Tian DU (杜天), Fang HAO (郝芳). Hollow hexagonal pattern with surface discharges in a dielectric barrier discharge[J]. Plasma Science and Technology, 2017, 19(5): 55401-055401. DOI: 10.1088/2058-6272/aa594a |
[4] | Fangmin HUANG (黄芳敏), Zhouyang LONG (龙洲洋), Sa LIU (刘飒), Zhenglong QIN (秦正龙). Dielectric barrier discharge plasma pretreatment on hydrolysis of microcrystalline cellulose[J]. Plasma Science and Technology, 2017, 19(4): 45504-045504. DOI: 10.1088/2058-6272/aa4c20 |
[5] | QI Xiaohua (齐晓华), YANG Liang (杨亮), YAN Huijie (闫慧杰), JIN Ying (金英), HUA Yue (滑跃), REN Chunsheng (任春生). Experimental Study on Surface Dielectric Barrier Discharge Plasma Actuator with Different Encapsulated Electrode Widths for Airflow Control at Atmospheric Pressure[J]. Plasma Science and Technology, 2016, 18(10): 1005-1011. DOI: 10.1088/1009-0630/18/10/07 |
[6] | DI Lanbo(底兰波), ZHANG Xiuling(张秀玲), XU Zhijian(徐志坚). Preparation of Copper Nanoparticles Using Dielectric Barrier Discharge at Atmospheric Pressure and its Mechanism[J]. Plasma Science and Technology, 2014, 16(1): 41-44. DOI: 10.1088/1009-0630/16/1/09 |
[7] | LIU Wenzheng(刘文正), LI Chuanhui(李传辉). Study on the Generation Characteristics of Dielectric Barrier Discharge Plasmas on Water Surface[J]. Plasma Science and Technology, 2014, 16(1): 26-31. DOI: 10.1088/1009-0630/16/1/06 |
[8] | N. LARBI DAHO BACHIR, A. BELASRI. A Simplified Numerical Study of the Kr/Cl2 Plasma Chemistry in Dielectric Barrier Discharge[J]. Plasma Science and Technology, 2013, 15(4): 343-349. DOI: 10.1088/1009-0630/15/4/07 |
[9] | WANG Changquan (王长全), ZHANG Guixin (张贵新), WANG Xinxin (王新新). Surface Treatment of Polypropylene Films Using Dielectric Barrier Discharge with Magnetic Field[J]. Plasma Science and Technology, 2012, 14(10): 891-896. DOI: 10.1088/1009-0630/14/10/07 |
[10] | SHAO Xianjun, ZHANG Guanjun, KAWADA Masatake, MA Yue, LI Yaxi. Simulational study on multi-pulse phenomena of atmospheric pressure argon dielectric barrier discharge[J]. Plasma Science and Technology, 2011, 13(6): 708-713. |
1. | Wang, T., Wang, J., Wang, S. et al. Influence of ring electrodes covered with dielectric layer on the characteristics of atmospheric pressure plasma jet and its interaction with polymer surface. Applied Surface Science, 2022. DOI:10.1016/j.apsusc.2022.152681 |
2. | Nguyen, T.T., Bounyang, O., Sakamoto, J. et al. Suppression of Plasma Source Temperature for Long Irradiation Using a Plasma Argon Jet. IEEJ Transactions on Fundamentals and Materials, 2022, 142(2): 37-44. DOI:10.1541/ieejfms.142.37 |