Advanced Search+
Huijuan WANG (王慧娟), Danni MAO (毛丹妮), Wudi CAO (曹无敌), Xin YAN (闫欣). Analysis of the critical active species for methylene blue decoloration in a dielectric barrier discharge plasma system[J]. Plasma Science and Technology, 2020, 22(10): 105504. DOI: 10.1088/2058-6272/aba345
Citation: Huijuan WANG (王慧娟), Danni MAO (毛丹妮), Wudi CAO (曹无敌), Xin YAN (闫欣). Analysis of the critical active species for methylene blue decoloration in a dielectric barrier discharge plasma system[J]. Plasma Science and Technology, 2020, 22(10): 105504. DOI: 10.1088/2058-6272/aba345

Analysis of the critical active species for methylene blue decoloration in a dielectric barrier discharge plasma system

Funds: Thanks go to National Natural Science Foundation of China (No. 21876070) and Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment for their support of this work.
More Information
  • Received Date: April 20, 2025
  • Revised Date: July 01, 2020
  • Accepted Date: July 05, 2020
  • In the paper, a hybrid gas–liquid dielectric barrier discharge (DBD) plasma system was set up to treat a methylene blue (MB) solution. The effects of the change of the carrier gas, the gas bubbling rate and different kinds of scavenger addition, including sodium carbonate (Na2CO3), para benzoquinone (p-BQ), triethylenediamine and sodium dihydrogen phosphate (NaH2PO4), on the MB decoloration were reviewed to clarify the critical active species for the dye decoloration in the DBD plasma system. The obtained results show that higher decoloration of the MB solution could be achieved when O2 was used as the carrier gas, which could be 100% after 20 min discharge treatment, and the result confirmed the crucial effect of O3 in the MB decoloration. Based on the experiments of the scavenger addition, it could be concluded that O2 and 1O2 were two other important reactive oxygen species (ROS) for the MB decoloration. The results of the higher chemical oxygen demand removal and faster disappearance of the characteristic peak of the MB from the UV–vis analysis under O2 bubbling conditions also proved the critical effect of the ROS formed by O2 on the MB decoloration.
  • [1]
    Sun M et al 2019 Chemosphere 228 595
    [2]
    Gui L et al 2019 Chemosphere 235 1189
    [3]
    Gogoi J et al 2019 Mater. Chem. Phys. 232 438
    [4]
    Nandhini N T et al 2019 Biocatal. Agricul. Biotechnol. 19 101138
    [5]
    He K et al 2018 Appl. Catal. B: Environ. 228 19
    [6]
    Miklos D B et al 2018 Water Res. 139 118
    [7]
    Ribeiro A R et al 2015 Environ. Int. 75 33
    [8]
    Hsieh K et al 2016 J. Hazard. Mater. 317 188
    [9]
    Guo H et al 2018 Sep. Purif. Technol. 190 288
    [10]
    Guo H et al 2019 J. Hazard. Mater. 371 666
    [11]
    Guo H et al 2019 Sep. Purif. Technol. 218 206
    [12]
    Zheng K et al 2019 Chemosphere 222 872
    [13]
    Shang K et al 2019 Plasma Sci. Technol. 21 043001
    [14]
    Guo H et al 2016 Chemosphere 159 221
    [15]
    Shang K et al 2017 Chem. Eng. J. 311 378
    [16]
    Jiang B et al 2014 Chem. Eng. J 236 348
    [17]
    Shang K et al 2019 Sep. Purif. Technol. 218 106
    [18]
    Yan X et al 2020 Sep. Purif. Technol. 231 115897
    [19]
    Chen Z et al 2017 Cancers (Basel) 9 61
    [20]
    Sarangapani C et al 2017 Innov. Food Sci. Emerg. Technol.44 235
    [21]
    Ji S H et al 2018 Arch Biochem. Biophys. 643 32
    [22]
    Hong Y C et al 2019 Chem. Eng. J 374 133
    [23]
    Nadjem A et al 2018 J. Electros. 95 24
    [24]
    Nadjem A et al 2017 J. Electros. 86 18
    [25]
    Zhang X et al 2018 J. Hazard. Mater. 360 341
    [26]
    Yang L et al 2019 Chem. Eng. Res. Des. 143 170
    [27]
    Mustafa M F et al 2018 J. Hazard. Mater. 347 317
    [28]
    Liu Y et al 2018 Chem. Eng. J. 345 679
    [29]
    Karimaei M et al 2017 J. of Mol. Liq. 248 177
    [30]
    Duan L et al 2015 Sep. Purif. Technol. 154 359
    [31]
    Iervolino G et al 2019 Sep. Purif. Technol. 215 155
    [32]
    Xue J et al 2008 Chem. Eng. J. 138 120
    [33]
    Tichonovas M et al 2013 Chem. Eng. J 229 9
    [34]
    Chen G et al 2009 J. Hazard. Mater. 172 786
    [35]
    Huang F et al 2010 Chem. Eng. J. 162 250
    [36]
    Abdel-Fattah E 2019 J. Electros. 101 103360
    [37]
    Manoj Kumar Reddy P et al 2013 Chem. Eng. J. 217 41
    [38]
    Wang B et al 2017 Chem. Eng. Sci. 168 90
    [39]
    Wang T et al 2018 Chem. Eng. J 346 65
    [40]
    Zhang X et al 2006 J. Photochem. Photobio. A: Chem. 184 26
    [41]
    Malik M A et al 2001 Plasma Sources Sci. Technol. 10 82
  • Related Articles

    [1]Jingyun ZHANG, Min ZHU, Chaohai ZHANG. Dynamic of mode transition in air surface micro-discharge plasma: reactive species in confined space[J]. Plasma Science and Technology, 2025, 27(1): 015402. DOI: 10.1088/2058-6272/ad862c
    [2]Shilin SONG, Yuyue HUANG, Yansheng DU, Sisi XIAO, Song HAN, Kun HU, Huihui ZHANG, Huijuan WANG, Chundu WU, Qiong A. Oxidation of ciprofloxacin by the synergistic effect of DBD plasma and persulfate: reactive species and influencing factors analysis[J]. Plasma Science and Technology, 2023, 25(2): 025505. DOI: 10.1088/2058-6272/ac8dd4
    [3]Yang CAO (曹洋), Guangzhou QU (屈广周), Tengfei LI (李腾飞), Nan JIANG (姜楠), Tiecheng WANG (王铁成). Review on reactive species in water treatment using electrical discharge plasma: formation, measurement, mechanisms and mass transfer[J]. Plasma Science and Technology, 2018, 20(10): 103001. DOI: 10.1088/2058-6272/aacff4
    [4]Rahul NAVIK, Sameera SHAFI, Md Miskatul ALAM, Md Amjad FAROOQ, Lina LIN (林丽娜), Yingjie CAI (蔡映杰). Influence of dielectric barrier discharge treatment on mechanical and dyeing properties of wool[J]. Plasma Science and Technology, 2018, 20(6): 65504-065504. DOI: 10.1088/2058-6272/aaaadd
    [5]Zelong ZHANG (张泽龙), Jie SHEN (沈洁), Cheng CHENG (程诚), Zimu XU (许子牧), Weidong XIA (夏维东). Generation of reactive species in atmospheric pressure dielectric barrier discharge with liquid water[J]. Plasma Science and Technology, 2018, 20(4): 44009-044009. DOI: 10.1088/2058-6272/aaa437
    [6]Xuechen LI (李雪辰), Biao WANG (王彪), Pengying JIA (贾鹏英), Linwei YANG (杨林伟), Yaru LI (李亚茹), Jingdi CHU (楚婧娣). Three modes of a direct-current plasma jet operated underwater to degrade methylene blue[J]. Plasma Science and Technology, 2017, 19(11): 115505. DOI: 10.1088/2058-6272/aa86a6
    [7]Qingsong GAO (高青松), Yongjun LIU (刘永军), Bing SUN (孙冰). Characteristics of gas-liquid diaphragm discharge and its application on decolorization of brilliant red B in aqueous solution[J]. Plasma Science and Technology, 2017, 19(11): 115404. DOI: 10.1088/2058-6272/aa8593
    [8]Feng LIU (刘峰), Bo ZHANG (张波), Zhi FANG (方志), Wenchun WANG (王文春). Generation of reactive atomic species of positive pulsed corona discharges in wetted atmospheric flows of nitrogen and oxygen[J]. Plasma Science and Technology, 2017, 19(6): 64008-064008. DOI: 10.1088/2058-6272/aa632f
    [9]Yuyang WANG (汪宇扬), Cheng CHENG (程诚), Peng GAO (高鹏), Shaopeng LI (李少鹏), Jie SHEN (沈洁), Yan LAN (兰彦), Yongqiang YU (余永强), Paul K CHU (朱剑豪). Cold atmospheric-pressure air plasma treatment of C6 glioma cells: effects of reactive oxygen species in the medium produced by the plasma on cell death[J]. Plasma Science and Technology, 2017, 19(2): 25503-025503. DOI: 10.1088/2058-6272/19/2/025503
    [10]WEN Xiaoqiong (温小琼), Wang Ming (王明), DING Zhenfeng (丁振峰), LIU Guishi (刘贵师). Decoloration of azo dye sunset yellow by a coaxial insulated-rod-to-cylinder underwater streamer discharge system[J]. Plasma Science and Technology, 2012, 14(4): 293-296. DOI: 10.1088/1009-0630/14/4/05
  • Cited by

    Periodical cited type(11)

    1. Huang, J.-W., Han, J.-G., Guo, H. Fe2+/Fe3+ cycle promoting hydroxylamine activation in dielectric barrier discharge system for efficient degradation of antibiotics: Insight into performance and activation mechanism. Separation and Purification Technology, 2025. DOI:10.1016/j.seppur.2024.129709
    2. Shen, X., Yang, Y., Zhang, J. et al. Design of a multi-electrode dielectric barrier discharge reactor and experimental study on the degradation of atrazine in water. Environmental Science and Pollution Research, 2024, 31(23): 33561-33579. DOI:10.1007/s11356-024-33450-3
    3. Wang, Y., Xiang, L., Li, Z. et al. Sulfite activation by water film dielectric barrier discharge plasma for ibuprofen degradation: efficiency, comparison of persulfate, mechanism, active substances dominant to pathway, and toxicity evaluation. Separation and Purification Technology, 2024. DOI:10.1016/j.seppur.2023.125531
    4. Liu, S., Kang, Y., Hua, W. Efficient degradation of the refractory organic pollutant by underwater bubbling pulsed discharge plasma: performance, degradation pathway, and toxicity prediction. Environmental Science and Pollution Research, 2023, 30(45): 100596-100612. DOI:10.1007/s11356-023-29432-6
    5. Xiao, S., Shen, Z., Song, S. et al. Enhanced sulfadiazine degradation in a multi-electrode paralleling DBD plasma system coupled with ZnO/cellulose acetate films. Journal of Environmental Chemical Engineering, 2023, 11(1): 109063. DOI:10.1016/j.jece.2022.109063
    6. Huang, J., Puyang, C., Wang, Y. et al. Hydroxylamine activated by discharge plasma for synergetic degradation of tetracycline in water: Insight into performance and mechanism. Separation and Purification Technology, 2022. DOI:10.1016/j.seppur.2022.121913
    7. Hu, K., Song, S., Zhang, H. et al. Degradation of sulfadiazine in a cyclic V-SDBD plasma system: Parameters analysis and degradation pathway. Journal of Environmental Chemical Engineering, 2022, 10(3): 107415. DOI:10.1016/j.jece.2022.107415
    8. Li, Z., Wang, Y., Guo, H. et al. Insights into water film DBD plasma driven by pulse power for ibuprofen elimination in water: performance, mechanism and degradation route. Separation and Purification Technology, 2021. DOI:10.1016/j.seppur.2021.119415
    9. GAUTAM, S., MORRA, G. Pre-breakdown to stable phase and origin of multiple current pulses in argon dielectric barrier discharge. Plasma Science and Technology, 2021, 23(12): 125403. DOI:10.1088/2058-6272/ac241f
    10. Wang, H., Shen, Z., Yan, X. et al. Dielectric barrier discharge plasma coupled with WO3 for bisphenol A degradation. Chemosphere, 2021. DOI:10.1016/j.chemosphere.2021.129722
    11. Wang, H., Shen, Z., Cao, W. Decoloration of Methylene Blue in a Surface/Volume Dielectric Barrier Discharge System. 2021. DOI:10.1109/CIEEC50170.2021.9510767

    Other cited types(0)

Catalog

    Article views (150) PDF downloads (143) Cited by(11)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return