Processing math: 100%
Advanced Search+
Ping XU (许平), Yi YU (余羿), Haiyang ZHOU (周海洋), Changjun QIU (邱长军). A large-grain-size thick-film polycrystalline diamond detector for x-ray detection[J]. Plasma Science and Technology, 2020, 22(12): 125601. DOI: 10.1088/2058-6272/aba512
Citation: Ping XU (许平), Yi YU (余羿), Haiyang ZHOU (周海洋), Changjun QIU (邱长军). A large-grain-size thick-film polycrystalline diamond detector for x-ray detection[J]. Plasma Science and Technology, 2020, 22(12): 125601. DOI: 10.1088/2058-6272/aba512

A large-grain-size thick-film polycrystalline diamond detector for x-ray detection

Funds: This work is supported by the National Key R&D Program of China (Grant No. 2017YFE0301300) and the Hunan Provincial Innovation Foundation for Postgraduate (Grant No. CX2018B588).
More Information
  • Received Date: May 21, 2020
  • Revised Date: July 07, 2020
  • Accepted Date: July 09, 2020
  • A diamond film with a size of 6 × 6 × 0.5 mm3 is fabricated by electron-assisted chemical vapor deposition. Raman spectrum analysis, x-ray diffraction and scanning electron microscope images confirm the high purity and large grain size, which is larger than 300 μm. Its resistivity is higher than 1012Ωcm. Interlaced-finger electrodes are imprinted onto the diamond film to develop an x-ray detector. Ohmic contact is confirmed by checking the linearity of its current–voltage curve. The dark current is lower than 0.1 nA under an electric field of 30 kV cm−1. The time response is 220 ps. The sensitivity is about 125 mA W−1 under a biasing voltage of 100 V. A good linear radiation dose rate is also confirmed. This diamond detector is used to measure x-ray on a Z-pinch, which has a double-layer 'nested tungsten wire array'. The pronounced peaks in the measured waveform clearly characterize the x-ray bursts, which proves the performance of this diamond detector.
  • [1]
    Sorce C et al 2006 Rev. Sci. Instrum. 77 10E518
    [2]
    Biagtan E et al 1996 Nucl. Instrum. Methods Phys. Res. B 108 125
    [3]
    Kania D R et al 1986 J. Appl. Phys. 60 2596
    [4]
    Spielman R B et al 1997 Rev. Sci. Instrum. 68 782
    [5]
    Nemtsev G et al 2016 Rev. Sci. Instrum. 87 11D835
    [6]
    Wentorf R H Jr 1971 J. Phys. Chem. 75 1833
    [7]
    Kanda H 2000 Braz. J. Phys. 30 482
    [8]
    Radishev D B et al 2017 EPJ Web Conf. 149 02029
    [9]
    Hodgson M et al 2017 Nucl. Instrum. Methods Phys. Res. A 847 1
    [10]
    Xu P et al 2018 Appl. Phys. Lett. 112 242402
    [11]
    Nemanich R J et al 1988 J. Vac. Sci. Technol. A 6 1783
    [12]
    Rossi M C et al 2003 Diam. Relat. Mater. 12 696
    [13]
    Adam W et al 2003 Nucl. Instrum. Methods Phys. Res. A 51 1124
    [14]
    Han S, Wagner R S and Gullikson E 1996 Nucl. Instrum.Methods Phys. Res. A 380 205
    [15]
    Sarkisov G S et al 2007 Phys. Plasmas 14 112701
    [16]
    Spielman R B et al 1998 Phys. Plasmas 5 2105
    [17]
    Deeney C et al 1998 Phys. Rev. Lett. 81 4883
    [18]
    Lebedev S V et al 2000 Phys. Rev. Lett. 84 1708
    [19]
    Faggio G et al 1999 Microsyst Technol. 6 23
    [20]
    Bergonzo P et al 2000 Appl. Surf. Sci. 154–155 179
    [21]
    Liu L Y et al 2014 AIP Adv. 4 017114
    [22]
    AXUV/SXUV/UVG, Beijing Wahenyida Science and Technology Development Co. LTD (www.wahenyida.com)
    [23]
    Metcalfe A et al 2017 J. Instrum. 12 C01066
    [24]
    Kumar A et al 2017 Nucl. Instrum. Methods Phys. Res. A 858 12
    [25]
    Philip O et al 2017 IEEE Trans. Nucl. Sci. 64 2683
  • Cited by

    Periodical cited type(3)

    1. Wang, S.-Q., Wang, Z.-H., Tang, T.-F. et al. Numerical simulation of edge-localized mode at the pedestal region in the HL-3 tokamak | [HL-3 装置台基区边缘局域模的数值模拟研究]. Hejubian Yu Dengliziti Wuli/Nuclear Fusion and Plasma Physics, 2024, 44(4): 470-476. DOI:10.16568/j.0254-6086.202404015
    2. Wang, Y., Xu, X., Sun, A. et al. Effect of relative locations between internal transport barrier and q minon HL-2M's kink-ballooning stability. AIP Advances, 2022, 12(10): 105318. DOI:10.1063/5.0113311
    3. Huang, J., Chen, J., Xu, Y. et al. The role of the temperature changes caused by fueling and heating in the process of ELM mitigation. European Physical Journal Plus, 2022, 137(6): 721. DOI:10.1140/epjp/s13360-022-02913-2

    Other cited types(0)

Catalog

    Article views (175) PDF downloads (203) Cited by(3)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return