Advanced Search+
Haotian HUANG (黄浩天), Lu WANG (王璐). Effects of resonant magnetic perturbations on the loss of energetic ions in tokamak pedestal[J]. Plasma Science and Technology, 2020, 22(10): 105101. DOI: 10.1088/2058-6272/aba58c
Citation: Haotian HUANG (黄浩天), Lu WANG (王璐). Effects of resonant magnetic perturbations on the loss of energetic ions in tokamak pedestal[J]. Plasma Science and Technology, 2020, 22(10): 105101. DOI: 10.1088/2058-6272/aba58c

Effects of resonant magnetic perturbations on the loss of energetic ions in tokamak pedestal

Funds: This work was supported by the National Key R&D Program of China (No. 2017YFE0302000), National Natural Science Foundation of China (No. 11675059) and the Fundamental Research Funds for the Central Universities, HUST: 2019kfyXMBZ034.
More Information
  • Received Date: May 18, 2020
  • Revised Date: July 12, 2020
  • Accepted Date: July 12, 2020
  • Resonant magnetic perturbations (RMPs) are extensively applied to mitigate or suppress the edge localized mode in tokamak plasmas, but will break the axisymmetric magnetic field configuration and increase the loss of energetic ions. The mechanism of RMPs induced energetic ion loss has been extensively studied, and is mainly attributed to resonant effects. In this paper, in the perturbed non-axisymmetric tokamak pedestal, we analytically derive the equations of guiding center motion for energetic ions including the bounce/transit averaged radial drift velocity and the toroidal precession frequency modified by strong radial electric field. The loss time of energetic ions is numerically solved and its parametric dependence is analyzed in detail. We find that passing energetic ions cannot escape from the plasma, while deeply trapped energetic ions can escape from the plasma. The strong radial electric field plays an important role in modifying the toroidal precession frequency and resulting in the drift loss of trapped energetic ions. The loss time of trapped energetic ions is much smaller than the corresponding slowdown time in DIII-D pedestal. This indicates that the loss of trapped energetic ions in the perturbed non-axisymmetric pedestal is important, especially for the trapped energetic ions generated by perpendicular neutral beam injection.
  • [1]
    Gorelenkov N, Pinches S D and Toi K 2014 Nucl. Fusion 54 125001
    [2]
    Van Zeeland M A et al 2014 Plasma Phys. Control. Fusion 56 015009
    [3]
    Evans T E 2015 Plasma Phys. Control. Fusion 57 123001
    [4]
    Tani K et al 2012 Nucl. Fusion 52 013012
    [5]
    Koskela T et al 2012 Plasma Phys. Control. Fusion 54 105008
    [6]
    Sun Y et al 2015 Plasma Phys. Control. Fusion 57 045003
    [7]
    Van Zeeland M A et al 2015 Nucl. Fusion 55 073028
    [8]
    Garcia-Munoz M et al 2013 Plasma Phys. Control. Fusion 55 124014
    [9]
    Garcia-Munoz M et al 2013 Nucl. Fusion 53 123008
    [10]
    Rack M et al 2014 Plasma Phys. Control. Fusion 56 125012
    [11]
    Kim K et al 2018 Phys. Plasmas 25 122511
    [12]
    McClements K G et al 2015 Plasma Phys. Control. Fusion 57 075003
    [13]
    He K et al 2019 Nucl. Fusion 59 126026
    [14]
    Xu Y F et al 2018 Phys. Plasmas 25 012502
    [15]
    Mou M L et al 2017 Nucl. Fusion 57 046023
    [16]
    Shinohara K et al 2016 Nucl. Fusion 56 112018
    [17]
    Shaing K C, Ida K and Sabbagh S A 2015 Nucl. Fusion 55 125001
    [18]
    Pfefferlé D et al 2015 Nucl. Fusion 55 012001
    [19]
    Hamada S 1962 Nucl. Fusion 2 23
    [20]
    Liu Y Q et al 2011 Nucl. Fusion 51 083002
    [21]
    Fitzpatrick R 1993 Nucl. Fusion 33 1049
    [22]
    Taimourzadeh S et al 2019 Nucl. Fusion 59 046005
    [23]
    Kramer G J et al 2013 Plasma Phys. Control. Fusion 55 025013
    [24]
    Kurki-Suonio T et al 2017 Plasma Phys. Control. Fusion 59 014013
    [25]
    Huang J et al 2019 Plasma Sci. Technol. 21 065105
    [26]
    Särkimäki K et al 2018 Nucl. Fusion 58 076021
  • Cited by

    Periodical cited type(8)

    1. Chen, Z., Huang, Z., Jiang, M. et al. J-TEXT achievements in turbulence and transport in support of future device/reactor. Plasma Science and Technology, 2024, 26(11): 114001. DOI:10.1088/2058-6272/ad663b
    2. Ding, Y., Wang, N., Chen, Z. et al. Overview of the recent experimental research on the J-TEXT tokamak. Nuclear Fusion, 2024, 64(11): 112005. DOI:10.1088/1741-4326/ad336e
    3. Anastassiou, G., Zestanakis, P., Antonenas, Y. et al. Role of the edge electric field in the resonant mode-particle interactions and the formation of transport barriers in toroidal plasmas. Journal of Plasma Physics, 2024, 90(1): 905900110. DOI:10.1017/S0022377824000047
    4. Zhu, B., Liu, J., Zhang, J. et al. Adaptive energy-preserving algorithms for guiding center system. Plasma Science and Technology, 2023, 25(4): 045102. DOI:10.1088/2058-6272/ac9c4a
    5. Gage, K.R., Chen, X., Van Zeeland, M. et al. Impact of β n and spectrum of n = 1 applied fields on fast ion losses in DIII-D. Nuclear Fusion, 2023, 63(3): 036002. DOI:10.1088/1741-4326/acb21f
    6. Galdon-Quiroga, J., Sanchis-Sanchez, L., Chen, X. et al. Experimental investigation of beam-ion losses induced by magnetic perturbations using the light ion beam probe technique in the ASDEX Upgrade tokamak. Nuclear Fusion, 2022, 62(9): 096004. DOI:10.1088/1741-4326/ac74d2
    7. Wang, N., Liang, Y., Ding, Y. et al. Advances in physics and applications of 3D magnetic perturbations on the J-TEXT tokamak. Nuclear Fusion, 2022, 62(4): 042016. DOI:10.1088/1741-4326/ac3aff
    8. Ida, K., McDermott, R.M., Holland, C. et al. Joint meeting of 9th Asia Pacific-Transport Working Group (APTWG) & EU-US Transport Task Force (TTF) workshop. Nuclear Fusion, 2022, 62(3): 037001. DOI:10.1088/1741-4326/ac3f19

    Other cited types(0)

Catalog

    Article views (209) PDF downloads (215) Cited by(8)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return