Advanced Search+
Xiaolong WANG (王晓龙), Zhenyu TAN (谭震宇), Jiaqi HAN (韩佳奇), Xiaotong LI (李晓彤). Numerical investigation on electron effects in the mass transfer of the plasma species in aqueous solution[J]. Plasma Science and Technology, 2020, 22(11): 115504. DOI: 10.1088/2058-6272/abaaa4
Citation: Xiaolong WANG (王晓龙), Zhenyu TAN (谭震宇), Jiaqi HAN (韩佳奇), Xiaotong LI (李晓彤). Numerical investigation on electron effects in the mass transfer of the plasma species in aqueous solution[J]. Plasma Science and Technology, 2020, 22(11): 115504. DOI: 10.1088/2058-6272/abaaa4

Numerical investigation on electron effects in the mass transfer of the plasma species in aqueous solution

Funds: This work was supported by the Fundamental Research Funds of Shandong University (2018TB037).
More Information
  • Received Date: May 11, 2020
  • Revised Date: July 27, 2020
  • Accepted Date: July 28, 2020
  • The objective of this work is to contribute an understanding of the effects of electrons in the plasmas on the mass transfer of plasma species in aqueous solution by means of the numerical simulation based on a one-dimensional diffusion-reaction model. The plasma species are divided into two groups, i.e. electrons and the other species, and the mass transfer in the three scenarios has been simulated, including the systematic calculations of the depth distributions of five major reactive species, OH, O3, HO2, O2 -, and H2O2 . In the three scenarios, the particles considered to enter into aqueous solution are all the plasma species (the scenario I, where the mass transfer of plasma species is a result due to the synergy of the electrons and the other plasma species), the other species (the scenario II), and only electrons in plasma species (the scenario III), respectively. The detailed analyses on the difference between the depth distributions of each reactive species in these three scenarios show the following conclusions. The electrons play an important role in the mass transfer of plasma species in aqueous solution and the synergy of the electrons and the other plasma species (the electron-species synergy) presents its different effects on the mass transfer. The vast majority of H2O2 are generated from a series of the electron- related reactions in aqueous solution, which is hardly affected by the electron-species synergy. Compared to the results when only the electrons enter into the liquid region, the electron-species synergy evidently weakens the generation of O2 -, O3, and OH, but promotes to produce HO2 .
  • [1]
    Fridman G et al 2008 Plasma Process. Polym. 5 503
    [2]
    von Woedtke T, Metelmann H R and Weltmann K D 2014 Contrib. Plasma Phys. 54 104
    [3]
    Lu X et al 2016 Phys. Rep. 630 1
    [4]
    Herron J T and Green D S 2001 Plasma Chem. Plasma Process. 21 459
    [5]
    Liu D X et al 2010 Plasma Sources Sci. Technol. 19 025018
    [6]
    van Gaens W and Bogaerts A 2014 Plasma Sources Sci.Technol. 23 035015
    [7]
    Kalghatgi S U et al 2007 IEEE Trans. Plasma Sci. 35 1559
    [8]
    Robert E et al 2013 Clin. Plasma Med. 1 8
    [9]
    Sun P et al 2010 IEEE Trans. Plasma Sci. 38 1892
    [10]
    Lee H W et al 2010 Plasma Process. Polym. 7 274
    [11]
    Choi J H et al 2014 Arch. Dermatol. Res. 306 635
    [12]
    Zhong S Y et al 2016 Br. J. Dermatol. 174 542
    [13]
    Duarte S et al 2011 Phys. Plasmas 18 073503
    [14]
    Keidar M et al 2013 Phys. Plasmas 20 057101
    [15]
    Metelmann H R et al 2015 Clin. Plasma Med. 3 17
    [16]
    Collet G et al 2014 Plasma Sources Sci. Technol. 23 012005
    [17]
    Schlegel J, Köritzer J and Boxhammer V 2013 Clin. Plasma Med. 1 2
    [18]
    Tian W and Kushner M J 2014 J. Phys. D: Appl. Phys. 47 165201
    [19]
    Xu D H et al 2015 PLoS One 10 e0128205
    [20]
    Du J et al 2018 Eur. Phys. J. D 72 179
    [21]
    Zhao Y F et al 2018 Phys. Plasmas 25 033504
    [22]
    Pan J et al 2016 Phys. Plasmas 23 073520
    [23]
    Jablonowski H et al 2015 Phys. Plasmas 22 122008
    [24]
    Lukes P et al 2014 Plasma Sources Sci. Technol. 23 015019
    [25]
    Tani A et al 2014 Jpn. J. Appl. Phys. 54 01AF01
    [26]
    Norberg S A et al 2014 J. Phys. D: Appl. Phys. 47 475203
    [27]
    Tian W and Kushner M J 2015 J. Phys. D: Appl. Phys. 48 494002
    [28]
    Liu Z C et al 2015 J. Phys. D: Appl. Phys. 48 495201
    [29]
    Liu D X et al 2016 Sci. Rep. 6 23737
    [30]
    Liu Z C et al 2017 Plasma Process. Polym. 14 1600113
    [31]
    Chen C et al 2018 Plasma Chem. Plasma Process. 38 89
    [32]
    Jiang J X et al 2016 Phys. Plasmas 23 103503
    [33]
    Chen C et al 2014 Plasma Chem. Plasma Process. 34 403
    [34]
    Bruggeman PJ et al 2016 Plasma Sources Sci. Technol. 25 053002
    [35]
    Jo A et al 2020 Curr. Appl. Phys. 20 562
    [36]
    Zhang J J and Oloman C W 2005 J. Appl. Electrochem. 35 945
    [37]
    Cutler R G and Rodriguez H 2003 Critical Reviews of Oxidative Stress and Aging: Advances in Basic Science,Diagnostics and Intervention (Singapore: World Scientific)
    [38]
    Blauwhoff P M M, Versteeg G F and van Swaaij W P M 1984 Chem. Eng. Sci. 39 207
    [39]
    Stewart P S 2003 J. Bacteriol. 185 1485
    [40]
    Gong X B et al 2007 Chem. Eng. Sci. 62 1081
    [41]
    Sakiyama Y et al 2012 J. Phys. D: Appl. Phys. 45 425201
    [42]
    Svishchev I M and Plugatyr A Y 2005 J. Phys. Chem. B 109 4123
  • Related Articles

    [1]ubao JIN (金福宝), Yuanxiang ZHOU (周远翔), Bin LIANG (梁斌), Zhongliu ZHOU (周仲柳), Ling ZHANG (张灵). Effects of temperature on creepage discharge characteristics in oil-impregnated pressboard insulation under combined AC–DC voltage[J]. Plasma Science and Technology, 2019, 21(5): 54002-054002. DOI: 10.1088/2058-6272/aaff01
    [2]Zhouming ZHANG (张洲铭), Zhaorui NI (倪兆瑞), Dengming XIAO (肖登明), Yizhou WU (吴亦舟). Insulation characteristics of triple mixtures of c-C4F8/N2/CO2 under lightning impulse voltage[J]. Plasma Science and Technology, 2018, 20(10): 105405. DOI: 10.1088/2058-6272/aace9d
    [3]Yuanxiang ZHOU (周远翔), Zhongliu ZHOU (周仲柳), Ling ZHANG (张灵), Yunxiao ZHANG (张云霄), Yajun MO (莫雅俊), Jiantao SUN (孙建涛). Characterization and comprehension of corona partial discharge in air under power frequency to very low frequency voltage[J]. Plasma Science and Technology, 2018, 20(5): 54016-054016. DOI: 10.1088/2058-6272/aaa479
    [4]Yongjie DING (丁永杰), Hong LI (李鸿), Boyang JIA (贾伯阳), PengLI (李朋), Liqiu WEI (魏立秋), YuXU (徐宇), Wuji PENG (彭武吉), Hezhi SUN (孙鹤芝), Yong CAO (曹勇), Daren YU (于达仁). Simulation of the effect of a magnetically insulated anode on a low-power cylindrical Hall thruster[J]. Plasma Science and Technology, 2018, 20(3): 35509-035509. DOI: 10.1088/2058-6272/aa9fe7
    [5]DUAN Ping (段萍), LIU Guangrui (刘广睿), BIAN Xingyu (边兴宇), CHEN Long (陈龙), YIN Yan (殷燕), CAO Anning (曹安宁). Effect of the Discharge Voltage on the Performance of the Hall Thruster[J]. Plasma Science and Technology, 2016, 18(4): 382-387. DOI: 10.1088/1009-0630/18/4/09
    [6]LIU Wenzheng(刘文正), WANG Hao(王浩), DOU Zhijun(窦志军). Impact of the Insulator on the Electric Field and Generation Characteristics of Vacuum Arc Metal Plasmas[J]. Plasma Science and Technology, 2014, 16(2): 134-141. DOI: 10.1088/1009-0630/16/2/09
    [7]WU Cheng (吴诚), PAN Wanjiang (潘皖江). Research and Analysis on Tensile and Compressive Fatigue Performance of Cryogenic Axial Insulation Breaks[J]. Plasma Science and Technology, 2013, 15(7): 716-720. DOI: 10.1088/1009-0630/15/7/20
    [8]ZHENG Jinxing (郑金星), SONG Yuntao (宋云涛), HUANG Xiongyi (黄雄一), LU Kun (陆坤), XI Weibin (奚维斌), DING Kaizhon (丁开忠), YE Bin (叶斌), NIU Erwu (牛二武). Experimental Study on Paschen Tests of ITER Current Lead Insulation[J]. Plasma Science and Technology, 2013, 15(2): 152-156. DOI: 10.1088/1009-0630/15/2/15
    [9]LUO Yongfen, JI Haiying, HUANG Ping, LI Yanming. Chaotic Characteristic of Time Series of Partial Discharge in Oil-Paper Insulation[J]. Plasma Science and Technology, 2011, 13(6): 740-746.
    [10]LI Shengtao, ZHANG Tuo, HUANG Qifeng, LI Weiwei, NI Fengyan, LI Jianying. Improvement of Surface Flashover Performance of Al2O3 Ceramics in Vacuum by Adopting A-B-A Insulation System[J]. Plasma Science and Technology, 2011, 13(2): 235-241.
  • Cited by

    Periodical cited type(15)

    1. Du, S., Cheng, X., Ge, G. et al. AC breakdown and decomposition products detection characteristics of eco-friendly insulating medium in gas insulated switchgear. Scientific Reports, 2024, 14(1): 19491. DOI:10.1038/s41598-024-70106-1
    2. Tian, S., Li, X., Zhang, Y. et al. Partial-Discharge-Induced Decomposition and By-Products Properties of Eco-Friendly Insulating Gas HFO-1234ze(E). IEEE Transactions on Dielectrics and Electrical Insulation, 2024, 31(3): 1447-1454. DOI:10.1109/TDEI.2023.3344691
    3. Lin, L., Qiang, C., Chen, Q. et al. Breakdown characteristics of HFO1234ze(E)/N2 gas mixture in non-uniform electric field under lightning impulse voltage. Journal of Materials Science: Materials in Electronics, 2024, 35(14): 978. DOI:10.1007/s10854-024-12599-0
    4. Zhang, X., Xiao, S., Zhang, B. et al. Challenges and Prospects for the Research of Environmentally Friendly Insulating Gases and Applications of Power Equipment Under Control Policies of PFAS and Fluorine Gas | [PFAS 及含氟气体管控下环保绝缘气体研究与电力装备应用展望]. Zhongguo Dianji Gongcheng Xuebao/Proceedings of the Chinese Society of Electrical Engineering, 2024, 44(1): 362-376. DOI:10.13334/j.0258-8013.pcsee.231579
    5. Ye, Y., Hao, Y., Guo, M. et al. Theoretical Assessment of the Interaction Mechanism Between Hydrofluoroolefins and Metal Electrodes in the Presence of Discharge. IEEE Transactions on Dielectrics and Electrical Insulation, 2024, 31(5): 2494-2502. DOI:10.1109/TDEI.2024.3394407
    6. Cui, Z., Li, Y., Xiao, S. et al. Recent progresses, challenges and proposals on SF6 emission reduction approaches. Science of the Total Environment, 2024. DOI:10.1016/j.scitotenv.2023.167347
    7. Zhang, B., Wang, S., Chen, L. et al. Influence of oxygen on solid carbon formation during arcing of eco-friendly SF6-alternative gases. Journal of Physics D: Applied Physics, 2023, 56(36): 365502. DOI:10.1088/1361-6463/acd64e
    8. Li, Y., Wang, Y., Xiao, S. et al. Partial discharge induced decomposition and by-products generation properties of HFO-1234ze(E)/CO2: a new eco-friendly gas insulating medium. Journal of Physics D: Applied Physics, 2023, 56(16): 165203. DOI:10.1088/1361-6463/acc03f
    9. Lin, L., Chen, Q., Wang, X. Power Frequency Breakdown Characteristics of HFO/N Gas Mixtures under an Extremely Nonuniform Electric Field. IEEE Transactions on Plasma Science, 2022, 50(10): 3725-3731. DOI:10.1109/TPS.2022.3200514
    10. Tian, S., Li, X., Chen, K. et al. Effect of External Electric Fields on the Structure and Properties of HFOă1234ze(E) | [外电场对 HFOă1234ze(E)分子的结构和性质的影响]. Gaodianya Jishu/High Voltage Engineering, 2022, 48(7): 2650-2658. DOI:10.13336/j.1003-6520.hve.20220392
    11. Gan, H., Wang, F., Zhong, L. et al. Theoretical study of the discharge decomposition mechanism of environment-friendly insulation gas HFO-1234ze(E) in the presence of trace water. Journal of Physics: Conference Series, 2022, 2221(1): 012024. DOI:10.1088/1742-6596/2221/1/012024
    12. Xiao, S., Han, P., Li, Y. et al. Insulation Performance and Electrical Field Sensitivity Properties of HFO-1336mzz(E)/CO2: A New Eco-friendly Gas Insulating Medium. IEEE Transactions on Dielectrics and Electrical Insulation, 2021, 28(6): 1938-1948. DOI:10.1109/TDEI.2021.009720
    13. Ranjan, P., Chen, L., Alabani, A. et al. Anomalous First Breakdown Behavior for HFO1234ze(E). IEEE Transactions on Dielectrics and Electrical Insulation, 2021, 28(5): 1620-1627. DOI:10.1109/TDEI.2021.009676
    14. Liu, H., Li, Q., Wang, J. et al. Inhibition Effect of Solid Products and DC Breakdown Characteristics of the HFO1234Ze(E)-N2-O2 Ternary Gas Mixture. ACS Omega, 2021, 6(36): 23281-23292. DOI:10.1021/acsomega.1c03020
    15. Li, L., Han, P., Yao, Q. et al. RESEARCH ON THE POWER FREQUENCY BREAKDOWN CHARACTERISTICS OF A NEW ECO-FRIENDLY GAS INSULATING MEDIUM HFO-1336mzz(E). IET Conference Proceedings, 2021, 2021(15): 1925-1928. DOI:10.1049/icp.2022.0449

    Other cited types(0)

Catalog

    Article views (143) PDF downloads (150) Cited by(15)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return