Advanced Search+
Rishi VERMA, Ekansh MISHRA, Prosenjit DHANG, Basanta Kumar DAS, Manraj MEENA, Lakshman RONGALI, Archana SHARMA. Development and performance characterization of a compact plasma focus based portable fast neutron generator[J]. Plasma Science and Technology, 2020, 22(11): 115506. DOI: 10.1088/2058-6272/abb079
Citation: Rishi VERMA, Ekansh MISHRA, Prosenjit DHANG, Basanta Kumar DAS, Manraj MEENA, Lakshman RONGALI, Archana SHARMA. Development and performance characterization of a compact plasma focus based portable fast neutron generator[J]. Plasma Science and Technology, 2020, 22(11): 115506. DOI: 10.1088/2058-6272/abb079

Development and performance characterization of a compact plasma focus based portable fast neutron generator

More Information
  • Received Date: June 06, 2020
  • Revised Date: August 09, 2020
  • Accepted Date: August 17, 2020
  • The design details and performance characterization results of a newly developed plasma focus based compact and portable system (0.5 m × 0.5 m × 1.2 m, weighing ≈100 kg) that produces an average neutron yield of ~2 × 108 neutrons/shot (of fast D-D neutrons with typical energy ~2.45 MeV) at ~1.8 kJ energy discharge are reported. From the detailed analysis of the experimental characterization and simulation results of this system, it has been conclusively revealed that specifically in plasma focus devices with larger static inductance: (i) pinch current is a reliable and more valid neutron yield scaling parameter than peak current, (ii) the ratio of pinch/peak current improves as static inductance of the system reduces, (iii) the benign role of the higher static/pinch inductance ratio enables the supply of inductively stored energy in densely pinched plasma with a larger time constant and it is well depicted by the extended dip observed in the discharge current trace, (iv) there is the need to redefine existing index values of the pinch (Ipinch 4.7) and peak (Ipeak 3.9) currents in neutron yield scaling equations to higher values.
  • [1]
    Mikhailov Y V, Lemeshko B D and Prokuratov I A 2019 Plasma Phys. Rep. 45 334
    [2]
    Mather J W 1965 Phys. Fluids 8 366
    [3]
    Filipov N V, Filipova T I and Vinogradov V P 1962 Nucl.Fusion 2 577
    [4]
    Peacock N J et al 1972 European Conf. on Controlled Fusion and Plasma Physics
    [5]
    Hirano K and Yamamoto T 1988 Phys. Fluids 31 2710
    [6]
    Lee S 2014 J. Fusion Energy 33 319
    [7]
    Tomar B S et al 2013 Nucl. Instr. Meth. Phys. Res. Sect. A 703 11
    [8]
    Andola S et al 2014 Nucl. Instr. Meth. Phys. Res. Sect. A 753 138
    [9]
    Milanese M et al 2013 Rev. Sci. Instrum. 84 103501
    [10]
    Gribkov V et al 2006 AIP Conf. Proc. 875 415
    [11]
    Lee S et al 1988 Am. J. Phys. 56 62
    [12]
    Abdou A E et al 2012 IEEE Trans. Plasma Sci. 40 2741
    [13]
    Lee S and Saw S H 2008 J. Fusion Energy 27 292
    [14]
    Verma R et al 2016 Rev. Sci. Instrum. 87 095102
    [15]
    Lee S and Saw S H 2010 Energies 3 711
    [16]
    Bochkov V D et al 1998 Instrum. Exp. Tech. 41 676
    [17]
    Bushnell A H 2002 Interfacing pulsed power systems to switching power supplies Proc. 25th Int. Power Modulator Symp., 2002 and 2002 High-Voltage Workshop (Piscataway,NJ: IEEE) 290
    [18]
    Jednorog S et al 2014 J. Radioanal. Nucl. Chem. 301 23
    [19]
    Moreno J et al 2008 Meas. Sci. Technol. 19 087002
    [20]
    Ahmed S N 2015 Physics and Engineering of Radiation Detection (Amsterdam: Elsevier) (https://doi.org/10.1016/C2013-0-15270-1)
    [21]
    Verma R et al 2012 IEEE Trans. Plasma Sci. 40 3280
    [22]
    Milanese M M et al 2007 IEEE Trans. Plasma Sci. 35 808
    [23]
    Milanese M, Moroso R and Pouzo J 1993 IEEE Trans. Plasma Sci. 21 606
    [24]
    Behbahani R A and Aghamir F M 2011 Phys. Plasmas 18 103302
    [25]
    Yousefi H R et al 2006 Phys. Plasmas 13 114506
    [26]
    Bernard A et al 1977 Nucl. Instr. Methods 145 191
    [27]
    Castillo F et al 2000 J. Phys. D Appl. Phys. 33 141
    [28]
    Bruzzone H et al 2010 IEEE Trans. Plasma Sci. 38 1592
    [29]
    Pouzo J O and Milanese M M 2003 IEEE Trans. Plasma Sci.31 1237
    [30]
    Bilbao L and Bruzzone H 1984 Phys. Lett. A 101 261
    [31]
    Beg F N et al 2002 Appl. Phys. Lett. 80 3009
    [32]
    Alfvén H 1942 Stockholm Observatoriums Annaler 14 114
    [33]
    Koh J M et al 2005 Plasma Sources Sci. Technol. 14 12
    [34]
    Lee S et al 2008 Appl. Phys. Lett. 92 111501
    [35]
    Lee S et al 2011 J. Fusion Energy 30 277
    [36]
    Lee S and Serban A 1996 IEEE Trans. Plasma Sci. 24 1101
    [37]
    Acuña H, Bernal L and Pouzo J 1994 Proc. 1994 Int. Conf.Plasma Physics 125
    [38]
    Lee S and Saw S H 2017 The plasma focus—numerical experiments, insights and applications ed R S Rawat Plasma Science and Technology for Emerging Economies: An AAAPT Experience (Singapore: Springer) p 113
  • Related Articles

    [1]Zhongzheng LI (李中正), Juanfang HAN (韩娟芳), FangpingWANG (王芳平), Zhengwu CHEN (陈正武), Wenshan DUAN (段文山). Investigation of the fast magnetosonic wave excited by the Alfvén wave phase mixing by using the Hall–MHD model in inhomogeneous plasma[J]. Plasma Science and Technology, 2021, 23(3): 35003-035003. DOI: 10.1088/2058-6272/abe10b
    [2]Liang HAN (韩亮), Jun GAO (高俊), Tao CHEN (陈涛), Yuntian CONG (丛云天), Zongliang LI (李宗良). A method to measure the in situ magnetic field in a Hall thruster based on the Faraday rotation effect[J]. Plasma Science and Technology, 2019, 21(8): 85502-085502. DOI: 10.1088/2058-6272/ab0f63
    [3]Hong LI (李鸿), Xingyu LIU (刘星宇), Zhiyong GAO (高志勇), Yongjie DING (丁永杰), Liqiu WEI (魏立秋), Daren YU (于达仁), Xiaogang WANG (王晓钢). Particle-in-cell simulation for effect of anode temperature on discharge characteristics of a Hall effect thruster[J]. Plasma Science and Technology, 2018, 20(12): 125504. DOI: 10.1088/2058-6272/aaddf2
    [4]Liqiu WEI (魏立秋), Wenbo LI (李文博), Yongjie DING (丁永杰), Daren YU (于达仁). Effect of low-frequency oscillation on performance of Hall thrusters[J]. Plasma Science and Technology, 2018, 20(7): 75502-075502. DOI: 10.1088/2058-6272/aabae0
    [5]Yongjie DING (丁永杰), Hong LI (李鸿), Boyang JIA (贾伯阳), PengLI (李朋), Liqiu WEI (魏立秋), YuXU (徐宇), Wuji PENG (彭武吉), Hezhi SUN (孙鹤芝), Yong CAO (曹勇), Daren YU (于达仁). Simulation of the effect of a magnetically insulated anode on a low-power cylindrical Hall thruster[J]. Plasma Science and Technology, 2018, 20(3): 35509-035509. DOI: 10.1088/2058-6272/aa9fe7
    [6]CHANG Lei (苌磊), LI Qingchong (李庆冲), ZHANG Huijie (张辉洁), LI Yinghong (李应红), WU Yun (吴云), ZHANG Bailing (张百灵), ZHUANG Zhong (庄重). Effect of Radial Density Configuration on Wave Field and Energy Flow in Axially Uniform Helicon Plasma[J]. Plasma Science and Technology, 2016, 18(8): 848-854. DOI: 10.1088/1009-0630/18/8/10
    [7]DUAN Ping (段萍), BIAN Xingyu (边兴宇), CAO Anning (曹安宁), LIU Guangrui (刘广睿), CHEN Long (陈龙), YIN Yan (殷燕). Effect of Segmented Electrode Length on the Performances of an Aton-Type Hall Thruster[J]. Plasma Science and Technology, 2016, 18(5): 525-530. DOI: 10.1088/1009-0630/18/5/14
    [8]DUAN Ping (段萍), LIU Guangrui (刘广睿), BIAN Xingyu (边兴宇), CHEN Long (陈龙), YIN Yan (殷燕), CAO Anning (曹安宁). Effect of the Discharge Voltage on the Performance of the Hall Thruster[J]. Plasma Science and Technology, 2016, 18(4): 382-387. DOI: 10.1088/1009-0630/18/4/09
    [9]K. Ogawa, M. Isobe, K. Toi, F. Watanabe, D. A. Spong, A. Shimizu, M. Osakabe, D. S. Darrow, S. Ohdachi, S. Sakakibara, LHD Experiment Group. Magnetic Configuration Effects on Fast Ion Losses Induced by Fast Ion Driven Toroidal Alfvén Eigenmodes in the Large Helical Device[J]. Plasma Science and Technology, 2012, 14(4): 269-272. DOI: 10.1088/1009-0630/14/4/01
    [10]LIU Xun (刘勋), LI Yutong (李玉同), ZHONG Jiayong (仲佳勇), DONG Quanli (董全力), WANG Shoujun (王首钧), ZHANG Lei (张蕾), ZHU Jianqiang (朱健强), ZHAO Gang (赵刚), ZHANG Jie (张杰). Characteristics of Plasma Jets in Laser-Driven Magnetic Reconnection[J]. Plasma Science and Technology, 2012, 14(2): 97-101. DOI: 10.1088/1009-0630/14/2/03

Catalog

    Article views (116) PDF downloads (205) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return