Advanced Search+
Rishi VERMA, Ekansh MISHRA, Prosenjit DHANG, Basanta Kumar DAS, Manraj MEENA, Lakshman RONGALI, Archana SHARMA. Development and performance characterization of a compact plasma focus based portable fast neutron generator[J]. Plasma Science and Technology, 2020, 22(11): 115506. DOI: 10.1088/2058-6272/abb079
Citation: Rishi VERMA, Ekansh MISHRA, Prosenjit DHANG, Basanta Kumar DAS, Manraj MEENA, Lakshman RONGALI, Archana SHARMA. Development and performance characterization of a compact plasma focus based portable fast neutron generator[J]. Plasma Science and Technology, 2020, 22(11): 115506. DOI: 10.1088/2058-6272/abb079

Development and performance characterization of a compact plasma focus based portable fast neutron generator

More Information
  • Received Date: June 06, 2020
  • Revised Date: August 09, 2020
  • Accepted Date: August 17, 2020
  • The design details and performance characterization results of a newly developed plasma focus based compact and portable system (0.5 m × 0.5 m × 1.2 m, weighing ≈100 kg) that produces an average neutron yield of ~2 × 108 neutrons/shot (of fast D-D neutrons with typical energy ~2.45 MeV) at ~1.8 kJ energy discharge are reported. From the detailed analysis of the experimental characterization and simulation results of this system, it has been conclusively revealed that specifically in plasma focus devices with larger static inductance: (i) pinch current is a reliable and more valid neutron yield scaling parameter than peak current, (ii) the ratio of pinch/peak current improves as static inductance of the system reduces, (iii) the benign role of the higher static/pinch inductance ratio enables the supply of inductively stored energy in densely pinched plasma with a larger time constant and it is well depicted by the extended dip observed in the discharge current trace, (iv) there is the need to redefine existing index values of the pinch (Ipinch 4.7) and peak (Ipeak 3.9) currents in neutron yield scaling equations to higher values.
  • [1]
    Mikhailov Y V, Lemeshko B D and Prokuratov I A 2019 Plasma Phys. Rep. 45 334
    [2]
    Mather J W 1965 Phys. Fluids 8 366
    [3]
    Filipov N V, Filipova T I and Vinogradov V P 1962 Nucl.Fusion 2 577
    [4]
    Peacock N J et al 1972 European Conf. on Controlled Fusion and Plasma Physics
    [5]
    Hirano K and Yamamoto T 1988 Phys. Fluids 31 2710
    [6]
    Lee S 2014 J. Fusion Energy 33 319
    [7]
    Tomar B S et al 2013 Nucl. Instr. Meth. Phys. Res. Sect. A 703 11
    [8]
    Andola S et al 2014 Nucl. Instr. Meth. Phys. Res. Sect. A 753 138
    [9]
    Milanese M et al 2013 Rev. Sci. Instrum. 84 103501
    [10]
    Gribkov V et al 2006 AIP Conf. Proc. 875 415
    [11]
    Lee S et al 1988 Am. J. Phys. 56 62
    [12]
    Abdou A E et al 2012 IEEE Trans. Plasma Sci. 40 2741
    [13]
    Lee S and Saw S H 2008 J. Fusion Energy 27 292
    [14]
    Verma R et al 2016 Rev. Sci. Instrum. 87 095102
    [15]
    Lee S and Saw S H 2010 Energies 3 711
    [16]
    Bochkov V D et al 1998 Instrum. Exp. Tech. 41 676
    [17]
    Bushnell A H 2002 Interfacing pulsed power systems to switching power supplies Proc. 25th Int. Power Modulator Symp., 2002 and 2002 High-Voltage Workshop (Piscataway,NJ: IEEE) 290
    [18]
    Jednorog S et al 2014 J. Radioanal. Nucl. Chem. 301 23
    [19]
    Moreno J et al 2008 Meas. Sci. Technol. 19 087002
    [20]
    Ahmed S N 2015 Physics and Engineering of Radiation Detection (Amsterdam: Elsevier) (https://doi.org/10.1016/C2013-0-15270-1)
    [21]
    Verma R et al 2012 IEEE Trans. Plasma Sci. 40 3280
    [22]
    Milanese M M et al 2007 IEEE Trans. Plasma Sci. 35 808
    [23]
    Milanese M, Moroso R and Pouzo J 1993 IEEE Trans. Plasma Sci. 21 606
    [24]
    Behbahani R A and Aghamir F M 2011 Phys. Plasmas 18 103302
    [25]
    Yousefi H R et al 2006 Phys. Plasmas 13 114506
    [26]
    Bernard A et al 1977 Nucl. Instr. Methods 145 191
    [27]
    Castillo F et al 2000 J. Phys. D Appl. Phys. 33 141
    [28]
    Bruzzone H et al 2010 IEEE Trans. Plasma Sci. 38 1592
    [29]
    Pouzo J O and Milanese M M 2003 IEEE Trans. Plasma Sci.31 1237
    [30]
    Bilbao L and Bruzzone H 1984 Phys. Lett. A 101 261
    [31]
    Beg F N et al 2002 Appl. Phys. Lett. 80 3009
    [32]
    Alfvén H 1942 Stockholm Observatoriums Annaler 14 114
    [33]
    Koh J M et al 2005 Plasma Sources Sci. Technol. 14 12
    [34]
    Lee S et al 2008 Appl. Phys. Lett. 92 111501
    [35]
    Lee S et al 2011 J. Fusion Energy 30 277
    [36]
    Lee S and Serban A 1996 IEEE Trans. Plasma Sci. 24 1101
    [37]
    Acuña H, Bernal L and Pouzo J 1994 Proc. 1994 Int. Conf.Plasma Physics 125
    [38]
    Lee S and Saw S H 2017 The plasma focus—numerical experiments, insights and applications ed R S Rawat Plasma Science and Technology for Emerging Economies: An AAAPT Experience (Singapore: Springer) p 113
  • Related Articles

    [1]Dian ZHANG (张点), Jun ZHANG (张军), Song LI (李嵩), Jing LIU (刘静), Huihuang ZHONG (钟辉煌). Design and preliminary experiment of radial sheet beam terahertz source based on radial pseudospark discharge[J]. Plasma Science and Technology, 2019, 21(4): 44003-044003. DOI: 10.1088/2058-6272/aafbc3
    [2]Rongxiao ZHAI (翟戎骁), Tao HUANG (黄涛), Peitian CONG (丛培天), Weixi LUO (罗维熙), Zhiguo WANG (王志国), Tianyang ZHANG (张天洋), Jiahui YIN (尹佳辉). Comparative study on breakdown characteristics of trigger gap and overvoltage gap in a gas pressurized closing switch[J]. Plasma Science and Technology, 2019, 21(1): 15505-015505. DOI: 10.1088/2058-6272/aae432
    [3]Rongxiao ZHAI (翟戎骁), Mengtong QIU (邱孟通), Weixi LUO (罗维熙), Peitian CONG (丛培天), Tao HUANG (黄涛), Jiahui YIN (尹佳辉), Tianyang ZHANG (张天洋). Experimental investigation on the development characteristics of initial electrons in a gas pressurized closing switch under DC voltage[J]. Plasma Science and Technology, 2018, 20(4): 45505-045505. DOI: 10.1088/2058-6272/aaa8d8
    [4]Pengfei ZHANG (张鹏飞), Yang HU (胡杨), Jiang SUN (孙江), Yan SONG (宋岩), Jianfeng SUN (孙剑锋), Zhiming YAO (姚志明), Peitian CONG (丛培天), Mengtong QIU (邱孟通), Aici QIU (邱爱慈). Design and experimental research on a selfmagnetic pinch diode under MV[J]. Plasma Science and Technology, 2018, 20(1): 14014-014014. DOI: 10.1088/2058-6272/aa8592
    [5]Yuantao ZHANG (张远涛), Yu LIU (刘雨), Bing LIU (刘冰). On peak current in atmospheric pulse-modulated microwave discharges by the PIC-MCC model[J]. Plasma Science and Technology, 2017, 19(8): 85402-085402. DOI: 10.1088/2058-6272/aa6a51
    [6]JU Xingbao (琚兴宝), SUN Haishun (孙海顺), YANG Zhuo (杨倬), ZHANG Junmin (张俊民). Investigation on the Arc Ignition Characteristics and Energy Absorption of Liquid Metal Current Limiter Based on Self-Pinch Effect[J]. Plasma Science and Technology, 2016, 18(5): 531-537. DOI: 10.1088/1009-0630/18/5/15
    [7]HU Yixiang(呼义翔), ZENG Jiangtao(曾江涛), SUN Fengju(孙凤举), WEI Hao(魏浩), YIN Jiahui(尹佳辉), CONG Peitian(丛培天), QIU Aici(邱爱慈). Modeling Methods for the Main Switch of High Pulsed-Power Facilities Based on Transmission Line Code[J]. Plasma Science and Technology, 2014, 16(9): 873-876. DOI: 10.1088/1009-0630/16/9/12
    [8]DING Siye(丁斯晔), WAN Baonian(万宝年), WANG Lu(王璐), TI Ang(提昂), ZHANG Xinjun(张新军), LIU Zixi(刘子奚), QIAN Jinping(钱金平), ZHONG Guoqiang(钟国强), DUAN Yanmin(段艳敏). Observation of Electron Energy Pinch in HT-7 ICRF Heated Plasmas[J]. Plasma Science and Technology, 2014, 16(9): 826-832. DOI: 10.1088/1009-0630/16/9/04
    [9]YAO Xueling(姚学玲), CHEN Jingliang(陈景亮), HU Shangmao(胡上茂). Emission Current Characteristics of Triggered Device of Vacuum Switch[J]. Plasma Science and Technology, 2014, 16(4): 380-384. DOI: 10.1088/1009-0630/16/4/14
    [10]SUN Jiang (孙江), SUN Jianfeng (孙剑锋), YANG Hailiang (杨海亮), ZHANG Pengfei (张鹏飞), et al.. Plasma Density Influence on the Properties of a Plasma Filled Rod Pinch Diode[J]. Plasma Science and Technology, 2013, 15(9): 904-907. DOI: 10.1088/1009-0630/15/9/14

Catalog

    Article views (116) PDF downloads (205) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return