Advanced Search+
Shuhui YANG (杨姝惠), Tong ZHAO (赵彤), Jingxian CUI (崔静娴), Zhiyun HAN (韩智云), Liang ZOU (邹亮), Xiaolong WANG (王晓龙), Yuantao ZHANG (张远涛). Molecular dynamics simulations of the interaction between OH radicals in plasma with poly-β-1–6-N-acetylglucosamine[J]. Plasma Science and Technology, 2020, 22(12): 125401. DOI: 10.1088/2058-6272/abb454
Citation: Shuhui YANG (杨姝惠), Tong ZHAO (赵彤), Jingxian CUI (崔静娴), Zhiyun HAN (韩智云), Liang ZOU (邹亮), Xiaolong WANG (王晓龙), Yuantao ZHANG (张远涛). Molecular dynamics simulations of the interaction between OH radicals in plasma with poly-β-1–6-N-acetylglucosamine[J]. Plasma Science and Technology, 2020, 22(12): 125401. DOI: 10.1088/2058-6272/abb454

Molecular dynamics simulations of the interaction between OH radicals in plasma with poly-β-1–6-N-acetylglucosamine

More Information
  • Received Date: June 18, 2020
  • Revised Date: August 21, 2020
  • Accepted Date: August 31, 2020
  • Cold atmospheric plasma shows a satisfactory ability to inactivate bacterial biofilms that are difficult to remove using conventional methods in some cases. However, the researches on the inactivation mechanism are not quite sufficient. Poly-β-1–6-N-acetylglucosamine (PNAG), which is one of the important components in some biofilms, was used as the research subject, and the related mechanism of action triggered by different concentrations of the OH in plasma was studied using reactive molecular dynamics simulations. The results showed that OH radicals could not only trigger the hydrogen abstraction reaction leading to cleavage of the PNAG molecular structure, but undergo an OH addition reaction with PNAG molecules. New reaction pathways appeared in the simulations as the OH concentration increased, but the reaction efficiency first increased and then decreased. The simulation study in this paper could, to some extent, help elucidate the microscopic mechanism of the interaction between OH radicals in plasma and bacterial biofilms at the atomic level.
  • [1]
    Akhavan B et al 2018 Appl. Mater. Today 12 72
    [2]
    Su X et al 2018 Appl. Environ. Microbiol. 84 e02836-17
    [3]
    Liao X Y et al 2019 Crit. Rev. Food Sci. Nutr. 59 2562
    [4]
    Lee M H et al 2009 New J. Phys. 11 115022
    [5]
    Fridman G et al 2008 Plasma Processes Polym. 5 503
    [6]
    Keidar M et al 2011 Br. J. Cancer 105 1295
    [7]
    Graves D B 2012 J. Phys. D Appl. Phys. 45 263001
    [8]
    Stewart P S and Costerton J W 2001 Lancet 358 135
    [9]
    Mah T F et al 2003 Nature 426 306
    [10]
    Otto M 2008 Curr. Top. Microbiol. Immunol. 322 207
    [11]
    Moormeier D E and Bayles K W 2017 Mol. Microbiol.104 365
    [12]
    Singh S et al 2017 Open Microbiol. J. 11 53
    [13]
    Los A et al 2020 Appl. Environ. Microbiol. 86 e02619–02619
    [14]
    Patange A et al 2019 Int. J. Food Microbiol. 293 137
    [15]
    Matthes R et al 2013 Plasma Processes Polym. 10 161
    [16]
    Alkawareek M Y et al 2012 PLoS One 7 e44289
    [17]
    Govaert M et al 2019 Innovat. Food Sci. Emerg. Technol.52 376
    [18]
    Li Y L et al 2019 Plasma Chem. Plasma Process. 39 35
    [19]
    Modic M et al 2017 Int. J. Antimicrob. Agents 49 375
    [20]
    Handorf O et al 2018 Appl. Environ. Microbiol. 84 e01163-18
    [21]
    Gabriel A A et al 2016 Innovat. Food Sci. Emerg. Technol.36 311
    [22]
    Machala Z, Chládeková L and Pelach M 2010 J. Phys. D Appl.Phys. 43 222001
    [23]
    Zhang Q et al 2012 J. Appl. Phys. 111 123305
    [24]
    Liao X et al 2018 J. Food Sci. 83 401
    [25]
    Chandana L et al 2018 Sci. Total Environ. 640–641 493
    [26]
    Khan M S I, Lee E J and Kim Y J 2016 Sci. Rep. 6 37072
    [27]
    Abolfath R M, Van Duin A C T and Brabec T 2011 J. Phys.Chem. A 115 11045
    [28]
    Cui J X et al 2018 J. Phys. D Appl. Phys. 51 355401
    [29]
    Zhao T et al 2017 Phys. Plasma 24 103518
    [30]
    Van Duin A C T et al 2001 J. Phys. Chem. A 105 9396
    [31]
    Yusupov M et al 2012 New J. Phys. 14 093043
    [32]
    Yusupov M et al 2013 J. Phys. Chem. C 117 5993
    [33]
    Yusupov M et al 2015 Plasma Processes Polym. 12 162
    [34]
    Neyts E C et al 2014 J. Phys. D Appl. Phys. 47 293001
    [35]
    Bogaerts A et al 2014 Plasma Processes Polym. 11 1156
    [36]
    Liu D X et al 2010 Plasma Sources Sci. Technol. 19 025018
    [37]
    Bruggeman P and Schram D C 2010 Plasma Sources Sci.Technol. 19 045025
    [38]
    Kikuchi Y et al 2011 Jpn. J. Appl. Phys. 50 01AH03
    [39]
    Yusupov M et al 2014 J. Phys. D Appl. Phys. 47 025205
    [40]
    Hefny M M et al 2016 J. Phys. D Appl. Phys. 49 404002
    [41]
    Tian W and Kushner M J 2014 J. Phys. D Appl. Phys. 47 165201
    [42]
    Chenoweth K, Van Duin A C T and Goddard W A 2008 J. Phys. Chem. A 112 1040
    [43]
    Weismiller M R et al 2010 J. Phys. Chem. A 114 5485
    [44]
    Senftle T P et al 2016 npj Comput. Mater. 2 15011
    [45]
    Monti S et al 2013 Phys. Chem. Chem. Phys. 15 15062
    [46]
    Neyts E C, Van Duin A C T and Bogaerts A 2012 J. Am.Chem. Soc. 134 1256
    [47]
    Rahaman O et al 2011 J. Phys. Chem. B 115 249
    [48]
    Little D J et al 2018 PLoS Pathog. 14 e1006998
    [49]
    Flemming H C and Wingender J 2010 Nat. Rev. Microbiol.8 623
    [50]
    Bales P M et al 2013 PLoS One 8 e67950
    [51]
    Gening M L et al 2010 Eur. J. Org. Chem. 2010 2415
    [52]
    Izano E A et al 2007 Microb Pathog 43 1
    [53]
    Fang Z et al 2016 Eur. Phys. J. D 70 79
    [54]
    Zhang X H et al 2018 Plasma Processes Polym. 15 1700241
    [55]
    Srivastava N and Wang C J 2011 J. Appl. Phys. 110 053304
  • Related Articles

    [1]Yang CAO (曹洋), Guangzhou QU (屈广周), Tengfei LI (李腾飞), Nan JIANG (姜楠), Tiecheng WANG (王铁成). Review on reactive species in water treatment using electrical discharge plasma: formation, measurement, mechanisms and mass transfer[J]. Plasma Science and Technology, 2018, 20(10): 103001. DOI: 10.1088/2058-6272/aacff4
    [2]Zelong ZHANG (张泽龙), Jie SHEN (沈洁), Cheng CHENG (程诚), Zimu XU (许子牧), Weidong XIA (夏维东). Generation of reactive species in atmospheric pressure dielectric barrier discharge with liquid water[J]. Plasma Science and Technology, 2018, 20(4): 44009-044009. DOI: 10.1088/2058-6272/aaa437
    [3]He CHENG (程鹤), Maoyuan XU (徐茂源), Shuhui PAN (潘姝慧), Xinpei LU (卢新培), Dawei LIU (刘大伟). Interactions between multiple filaments and bacterial biofilms on the surface of an apple[J]. Plasma Science and Technology, 2018, 20(4): 44006-044006. DOI: 10.1088/2058-6272/aa9d7e
    [4]Feng LIU (刘峰), Bo ZHANG (张波), Zhi FANG (方志), Wenchun WANG (王文春). Generation of reactive atomic species of positive pulsed corona discharges in wetted atmospheric flows of nitrogen and oxygen[J]. Plasma Science and Technology, 2017, 19(6): 64008-064008. DOI: 10.1088/2058-6272/aa632f
    [5]Yuyang WANG (汪宇扬), Cheng CHENG (程诚), Peng GAO (高鹏), Shaopeng LI (李少鹏), Jie SHEN (沈洁), Yan LAN (兰彦), Yongqiang YU (余永强), Paul K CHU (朱剑豪). Cold atmospheric-pressure air plasma treatment of C6 glioma cells: effects of reactive oxygen species in the medium produced by the plasma on cell death[J]. Plasma Science and Technology, 2017, 19(2): 25503-025503. DOI: 10.1088/2058-6272/19/2/025503
    [6]NIU Guojian(牛国鉴), LI Xiaochun(李小椿), DING Rui(丁锐), XU Qian(徐倩), LUO Guangnan(罗广南). Molecular Dynamics Simulations of Deposition and Damage on Tungsten Plasma-Facing Materials by Tungsten Dust[J]. Plasma Science and Technology, 2014, 16(8): 805-808. DOI: 10.1088/1009-0630/16/8/13
    [7]YU Xingang (余新刚), GOU Fujun (苟富均). Molecular Dynamics Study on the Diffusion Properties of Hydrogen Atoms in Bulk Tungsten[J]. Plasma Science and Technology, 2013, 15(7): 710-715. DOI: 10.1088/1009-0630/15/7/19
    [8]HONG Rongjie (洪荣杰), YANG Zhongshi (杨钟时), NIU Guojian (牛国鉴), LUO Guangnan (罗广南). A Molecular Dynamics Study on the Dust-Plasma/Wall Interactions in the EAST Tokamak[J]. Plasma Science and Technology, 2013, 15(4): 318-322. DOI: 10.1088/1009-0630/15/4/03
    [9]Aamir Shahzad, HE Maogang. Thermodynamic Characteristics of Dusty Plasma studied by using Molecular Dynamics Simulation[J]. Plasma Science and Technology, 2012, 14(9): 771-777. DOI: 10.1088/1009-0630/14/9/01
    [10]May KORACHI, Necdet ASLAN. The Effect of Atmospheric Pressure Plasma Corona Discharge on pH, Lipid Content and DNA of Bacterial Cells[J]. Plasma Science and Technology, 2011, 13(1): 99-105.
  • Cited by

    Periodical cited type(13)

    1. Chen, Y., Chai, Z.-N., Zhang, Y.-T. Reactive Molecular Dynamics Simulation on Interaction Mechanisms of Cold Atmospheric Plasma and Phosphatidylcholine in Cell Membrane Structure. Plasma Processes and Polymers, 2025. DOI:10.1002/ppap.202400170
    2. Li, Y., Tan, S., Liu, D. et al. Molecular dynamics simulation research on the interaction between plasma and living organisms: A comprehensive review. Plasma Processes and Polymers, 2024, 21(2): 2300119. DOI:10.1002/ppap.202300119
    3. Tan, S., Zhu, H., Liu, D. et al. Molecular mechanism of cleavage of SARS-CoV-2 spike protein by plasma generated RONS. Frontiers in Physics, 2024. DOI:10.3389/fphy.2024.1357639
    4. Bai, Q., Liu, X., Sun, H. et al. Reaction analysis and the removal mechanism of organic contaminants in plasma cleaning: a molecular dynamics simulation. New Journal of Chemistry, 2023, 47(48): 22508-22517. DOI:10.1039/d3nj04298g
    5. Yang, Z., Xiao, A., Liu, D. et al. Damage of SARS-CoV-2 spike protein by atomic oxygen of cold atmospheric plasma: A molecular dynamics study. Plasma Processes and Polymers, 2023, 20(7): 2200242. DOI:10.1002/ppap.202200242
    6. Wang, J., Li, Q., Gong, Y. et al. Long-term corona behaviour and performance enhancing mechanism of SiC/epoxy nanocomposite in SF6 gas environment. Plasma Science and Technology, 2023, 25(3): 035501. DOI:10.1088/2058-6272/ac92d1
    7. Yusupov, M., Dewaele, D., Attri, P. et al. Molecular understanding of the possible mechanisms of oligosaccharide oxidation by cold plasma. Plasma Processes and Polymers, 2023, 20(2): 2200137. DOI:10.1002/ppap.202200137
    8. Li, Y., Liu, H., Ye, Y. et al. Microscopic investigation for the evaluation of atmospheric pressure non-equilibrium plasma technique used to remove contaminants from ancient Chinese murals. Journal of Cultural Heritage, 2022. DOI:10.1016/j.culher.2022.08.011
    9. Li, Y., Bai, Q., Guan, Y. et al. The mechanism study of low-pressure air plasma cleaning on large-aperture optical surface unraveled by experiment and reactive molecular dynamics simulation. Plasma Science and Technology, 2022, 24(6): 064012. DOI:10.1088/2058-6272/ac69b6
    10. Dong, N., Zou, L., Wang, X. et al. Investigation for the degradation mechanism of avermectins exposed to non-thermal atmospheric plasma. 2022. DOI:10.1109/CIEEC54735.2022.9846362
    11. Guo, H., Wang, Y., Yao, X. et al. A comprehensive insight into plasma-catalytic removal of antibiotic oxytetracycline based on graphene-TiO2-Fe3O4 nanocomposites. Chemical Engineering Journal, 2021. DOI:10.1016/j.cej.2021.130614
    12. Brault, P., Abraham, M., Bensebaa, A. et al. Insight into plasma degradation of paracetamol in water using a reactive molecular dynamics approach. Journal of Applied Physics, 2021, 129(18): 183304. DOI:10.1063/5.0043944
    13. Zhao, N., Wu, K., He, X. et al. A diffuse argon plume generated downstream of an atmospheric pressure plasma jet equipped with a positively biased electrode. Journal of Physics D: Applied Physics, 2021, 55(1): 015203. DOI:10.1088/1361-6463/ac27d5

    Other cited types(0)

Catalog

    Article views (209) PDF downloads (296) Cited by(13)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return