Advanced Search+
Yuanzhen WANG (王元震), Tianyang XIA (夏天阳), Yue LIU (刘悦). Numerical simulation of impact of supersonic molecular beam injection on edge localized modes[J]. Plasma Science and Technology, 2020, 22(12): 125101. DOI: 10.1088/2058-6272/abb456
Citation: Yuanzhen WANG (王元震), Tianyang XIA (夏天阳), Yue LIU (刘悦). Numerical simulation of impact of supersonic molecular beam injection on edge localized modes[J]. Plasma Science and Technology, 2020, 22(12): 125101. DOI: 10.1088/2058-6272/abb456

Numerical simulation of impact of supersonic molecular beam injection on edge localized modes

Funds: This work was sup- ported by the National Key R&D Program of China (Grant Nos. 2018YFE0303102 and 2017YFE0301100). This work was also partially supported by National Natural Science Foundation of China (Grant No. 11675217) and the Youth Innovation Promotion Association of Chinese Academy of Sciences (Grant No. 2017479).
More Information
  • Received Date: June 27, 2020
  • Revised Date: August 30, 2020
  • Accepted Date: August 31, 2020
  • A three-field model with the impact of supersonic molecular beam injection (SMBI) based on the BOUT++ code is built to simulate edge localized modes (ELMs). Different parameters of SMBI are explored to find an optimal SMBI scenario for ELM mitigation. The linear simulations show that the growth rate of peeling-ballooning mode is reduced by SMBI. The reduction amplitude of the growth rate is increased when the amplitude or width of SMBI is increased, and when SMBI is deposited at the top, bottom and middle of the pedestal, the reduction amplitude increases successively. The nonlinear simulations show that the ELM size is reduced by SMBI. The reduction amplitude of the ELM size is increased when the amplitude or width of SMBI is increased, and when SMBI is deposited at the bottom, top and middle of the pedestal, the reduction amplitude increases successively. Surface-averaged pressure profiles and filamentary structures are analyzed when the ELMs erupt. Deep deposition of SMBI such as at the top and middle of the pedestal reduces the inward collapse amplitude of the pressure profiles, which can improve the confinement efficiency during ELMs. Shallow deposition of SMBI such as at the middle and bottom of the pedestal reduces the outer extent of the filamentary structures, which can slow down the erosion of plasma-facing components caused by ELMs. In conclusion, shallow deposition of SMBI with sufficient amplitude and width can meet the needs of ELM mitigation.
  • [1]
    Wagner F et al 1982 Phys. Rev. Lett. 49 1408
    [2]
    ITER Physics Expert Group on Confinement and Transport,ITER Physics Expert Group on Confinement Modelling and Database and ITER Physics Basis Editors 1999 Nucl. Fusion 39 2175
    [3]
    Groebner R J and Osborne T H 1998 Phys. Plasmas 5 1800
    [4]
    Groebner R J 1993 Phys. Fluids B 5 2343
    [5]
    Xi P W et al 2012 Phys. Plasmas 19 092503
    [6]
    Zohm H 1995 Plasma Phys. Controlled Fusion 38 105
    [7]
    Kirk A et al 2006 Phys. Rev. Lett. 96 185001
    [8]
    Snyder P B et al 2002 Phys. Plasmas 9 2037
    [9]
    Wilson H R et al 2002 Phys. Plasmas 9 1277
    [10]
    Dudson B D et al 2009 Comput. Phys. Commun. 180 1467
    [11]
    Xu X Q et al 2010 Phys. Rev. Lett. 105 175005
    [12]
    Xia T Y and Xu X Q 2013 Phys. Plasmas 20 052102
    [13]
    Xia T Y, Xu X Q and Xi P W 2013 Nucl. Fusion 53 073009
    [14]
    Xu X Q et al 2011 Nucl. Fusion 51 103040
    [15]
    Federici G et al 2003 J. Nucl. Mater. 313–316 11
    [16]
    Baylor L R et al 2013 Phys. Rev. Lett. 110 245001
    [17]
    Nie L et al 2016 Plasma Sci. Technol. 18 120
    [18]
    Liang Y et al 2013 Phys. Rev. Lett. 110 235002
    [19]
    Bécoulet M et al 2014 Phys. Rev. Lett. 113 115001
    [20]
    Huang J et al 2019 Plasma Sci. Technol. 21 065105
    [21]
    Zhang Y P et al 2018 Nucl. Fusion 58 046018
    [22]
    Wang D S et al 2013 Plasma Sci. Technol. 15 614
    [23]
    Xiao W W et al 2012 Nucl. Fusion 52 114027
    [24]
    Yao L H et al 2007 Nucl. Fusion 47 1399
    [25]
    Zhong W L et al 2019 Nucl. Fusion 59 076033
    [26]
    Rhee T et al 2012 Phys. Plasmas 19 022505
    [27]
    Huang J et al 2015 Phys. Plasmas 22 122507
    [28]
    Huang J et al 2019 Plasma Phys. Controlled Fusion 61 025018
    [29]
    Ma Q et al 2016 Nucl. Fusion 56 126008
    [30]
    Hazeltine R D and Waelbroeck F L 1998 The Framework of Plasma Physics (Reading: Perseus Books)
    [31]
    Hazeltine R D and Meiss J D 2003 Plasma Confinement (New York: Dover Publications)
    [32]
    Fundamenski W and Garcia O E 2007 Comparison of coulomb collision rates in the plasma physics and magnetically confined fusion literature EFDA-JET-R(07)01
    [33]
    Dudson B D et al 2011 Plasma Phys. Controlled Fusion 53 054005
    [34]
    Umansky M V et al 2009 Comput. Phys. Commun. 180 887
  • Related Articles

    [1]Bang LI (李邦), Tingfeng MING (明廷凤), Qing ZHUANG (庄清), Feifei LONG (龙飞飞), Shanlu GAO (高善露), Qiqi SHI (石奇奇), Yumin WANG (王嵎民), Xiaoju LIU (刘晓菊), Shaocheng LIU (刘少承), Long ZENG (曾龙), Xiang GAO (高翔). Experimental study of ELM-induced filament structures using the VUV imaging system on EAST[J]. Plasma Science and Technology, 2021, 23(3): 35104-035104. DOI: 10.1088/2058-6272/abda9d
    [2]Nan ZHAO (赵楠), Ning YAN (颜宁), Guosheng XU (徐国盛), Zhengxiong WANG (王正汹), Ran CHEN (陈冉), Huiqian WANG (汪惠乾), Liang WANG (王亮), Siye DING (丁斯晔), Linming SHAO (邵林明), Liang CHEN (陈良), Guanghai HU (胡广海), Wei ZHANG (张炜). The observation of small ELM post-cursor mode in EAST[J]. Plasma Science and Technology, 2018, 20(2): 24007-024007. DOI: 10.1088/2058-6272/aa9bd8
    [3]FU Chao (付超), ZHONG Fangchuan (钟方川), HU Liqun (胡立群), YANG Jianhua (杨建华), YANG Zhendong (仰振东), GAN Kaifu (甘开福), ZHANG Bin (张斌), EAST Team. The Calibration of High-Speed Camera Imaging System for ELMs Observation on EAST Tokamak[J]. Plasma Science and Technology, 2016, 18(9): 884-889. DOI: 10.1088/1009-0630/18/9/02
    [4]NIE Lin (聂林), CHENG Jun (程钧), XU Hongbing (徐红兵), HUANG Yuan (黄渊), YAN Longwen (严龙文), DING Xuantong (丁玄同), XU Min (许敏), XU Yuhong (许宇鸿), YAO Lianghua (姚良骅), FENG Beibin (冯北滨), ZHU Genliang (朱根良), LIU Wandong (刘万东), DONG Jiaqi (董家齐), YU Deliang (余德良), ZHONG Wulv (钟武律), GAO Jinming (高金明), CHEN Chengyuan (陈程远), YANG Qingwei (杨青巍), DUAN Xuru (段旭如). Comparison of ELM-Filament Mitigation Between Supersonic Molecular Beam Injection and Pellet Injection on HL-2A[J]. Plasma Science and Technology, 2016, 18(2): 120-125. DOI: 10.1088/1009-0630/18/2/04
    [5]ZHANG Shanwen(张善文), SONG Yuntao(宋云涛), WANG Zhongwei(王忠伟), LU Su(卢速), JI Xiang(戢翔), DU Shuangsong(杜双松), LIU Xufeng(刘旭峰), FENG Changle(冯昌乐), YANG Hong(杨洪), WANG Songke(王松可), LUO Zhiren(罗志仁). Rapid Thermal-Hydraulic Analysis and Design Optimization of ITER Upper ELM Coils[J]. Plasma Science and Technology, 2014, 16(10): 978-983. DOI: 10.1088/1009-0630/16/10/14
    [6]WANG Xianwei(汪献伟), XIE Fei(谢飞), JIN Huan(金环). Electromagnetic Analyses of ITER Lower ELM Right Bottom Corner[J]. Plasma Science and Technology, 2014, 16(8): 800-804. DOI: 10.1088/1009-0630/16/8/12
    [7]ZHANG Shanwen(张善文), SONG Yuntao(宋云涛), WANG Zhongwei(王忠伟), LU Su(卢速), JI Xiang(戢翔), DU Shuangsong(杜双松), LIU Xufeng(刘旭峰), FENG Changle(冯昌乐), YANG Hong(杨洪), WANG Songke(王松可), LUO Zhiren(罗志仁). Mechanical Analysis and Optimization of ITER Upper ELM Coil & Feeder[J]. Plasma Science and Technology, 2014, 16(8): 794-799. DOI: 10.1088/1009-0630/16/8/11
    [8]ZHANG Shanwen(张善文), SONG Yuntao(宋云涛), WANG Zhongwei(王忠伟), JI Xiang(戢翔), E. DALY, M. KALISH, LU Su(卢速), DU Shuangsong(杜双松), LIU Xufeng(刘旭峰), FENG Changle(冯昌乐), YANG Hong(杨洪), WANG Songke(王松可). Design of Tokamak ELM Coil Support in High Nuclear Heat Environment[J]. Plasma Science and Technology, 2014, 16(3): 300-304. DOI: 10.1088/1009-0630/16/3/23
    [9]LIN Zhihong (林志宏), S. ETHIER, T. S. HAHM, W. M. TANG. Verification of Gyrokinetic Particle Simulation of Device Size Scaling of Turbulent Transport[J]. Plasma Science and Technology, 2012, 14(12): 1125-1126. DOI: 10.1088/1009-0630/14/12/17
    [10]CHEN Shaowen(陈少文), ZHANG Wenlan(张文澜), FAN Lixian(范丽仙), TANG Qiang(唐强), LIU Xiaowei(刘小伟). The Effect of the Size of Radiotherapy Photon Beams on the Absorbed Dose to an Al2O3 Dosimeter[J]. Plasma Science and Technology, 2012, 14(6): 558-562. DOI: 10.1088/1009-0630/14/6/28
  • Cited by

    Periodical cited type(3)

    1. Wang, S.-Q., Wang, Z.-H., Tang, T.-F. et al. Numerical simulation of edge-localized mode at the pedestal region in the HL-3 tokamak | [HL-3 装置台基区边缘局域模的数值模拟研究]. Hejubian Yu Dengliziti Wuli/Nuclear Fusion and Plasma Physics, 2024, 44(4): 470-476. DOI:10.16568/j.0254-6086.202404015
    2. Wang, Y., Xu, X., Sun, A. et al. Effect of relative locations between internal transport barrier and q minon HL-2M's kink-ballooning stability. AIP Advances, 2022, 12(10): 105318. DOI:10.1063/5.0113311
    3. Huang, J., Chen, J., Xu, Y. et al. The role of the temperature changes caused by fueling and heating in the process of ELM mitigation. European Physical Journal Plus, 2022, 137(6): 721. DOI:10.1140/epjp/s13360-022-02913-2

    Other cited types(0)

Catalog

    Article views (221) PDF downloads (296) Cited by(3)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return