Citation: | Zifeng SONG (宋仔峰), Bin ZHU (朱斌), Yunqing XIAO (肖云青), Tao XU (徐涛), Zhongjie LIU (刘中杰), Yuchi WU (吴玉迟), Xiayu ZHAN (詹夏宇), Tao YI (易涛), Jiabin CHEN (陈家斌), Qi TANG (唐琦). Design and performance study of a gas-Cherenkov detector with an off-axis parabolic reflector for inertial confinement fusion experiments[J]. Plasma Science and Technology, 2021, 23(1): 15201-015201. DOI: 10.1088/2058-6272/abc46a |
[1] |
Sayre D B et al 2012 Rev. Sci. Instrum. 83 10D905
|
[2] |
Leeper R J et al 1997 Rev. Sci. Instrum. 68 868
|
[3] |
Caldwell S E et al 2003 Rev. Sci. Instrum. 74 1837
|
[4] |
Rubery M S et al 2013 Rev. Sci. Instrum. 84 073504
|
[5] |
Rubery M S et al 2010 Rev. Sci. Instrum. 81 10D328
|
[6] |
Herrmann H W et al 2008 J. Phys.: Conf. Ser. 112 032084
|
[7] |
Malone R M et al 2010 Overview of the gamma reaction history diagnostic for the national ignition facility (NIF) Proc. SPIE 7652 76520Z
|
[8] |
Herrmann H W et al 2016 Rev. Sci. Instrum. 87 11E732
|
[9] |
Zylstra A B et al 2018 Rev. Sci. Instrum. 89 10I103
|
[10] |
Carrera J A et al 2017 Implementation of the next-generation gas Cherenkov detector at the national ignition facility Proc.SPIE 10390 103900K
|
[11] |
Kim Y et al 2012 Rev. Sci. Instrum. 83 10D311
|
[12] |
Murphy T J et al 2001 Rev. Sci. Instrum. 72 773
|
[13] |
Mack J M et al 2003 Nucl. Instrum. Methods Phys. Res. A 513 566
|
[14] |
Berggren R R et al 2001 Rev. Sci. Instrum. 72 873
|
[15] |
Malone R M et al 2008 Rev. Sci. Instrum. 79 10E532
|
[16] |
Herrmann H W et al 2010 J. Phys.: Conf. Ser. 244 032047
|
[17] |
Herrmann H W et al 2014 Rev. Sci. Instrum. 85 11E124
|
[18] |
Malone R M et al 2010 J. Phys.: Conf. Ser. 244 032052
|
[19] |
Liu B et al 2018 Nucl. Instrum. Methods Phys. Res. A 897 54
|
[20] |
Moran M J 1985 Rev. Sci. Instrum. 56 1066
|
[21] |
Agostinelli S et al 2003 Nucl. Instrum. Methods Phys. Res. A 506 250
|
[22] |
Herrmann H W et al 2008 Rev. Sci. Instrum. 79 10E531
|
[23] |
Song Z F et al 2016 Simulation of a fusion gamma reaction history diagnostic for the Shenguang-III facility Proc. SPIE 10173 101730Z
|
[24] |
Iodice M et al 1998 Nucl. Instrum. Methods Phys. Res. A 411 223
|
[25] |
Kim Y et al 2010 J. Phys.: Conf. Ser. 244 032050
|
[26] |
Herrmann H W et al 2010 Rev. Sci. Instrum. 81 10D333
|
[27] |
Meaney K D et al 2019 Rev. Sci. Instrum. 90 113503
|
[28] |
Allison J et al 2016 Nucl. Instrum. Methods Phys. Res. A 835 186
|
[29] |
Geddes C G R et al 2004 Nature 431 538
|
[30] |
Wu Y C et al 2012 Chin. Opt. Lett. 10 063501
|
[31] |
Peng H S et al 2006 Laser Phys. 16 244
|
[1] | Weikang TANG (汤炜康), Lai WEI (魏来), Zhengxiong WANG (王正汹), Jialei WANG (王佳磊), Tong LIU (刘桐), Shu ZHENG (郑殊). Effects of resonant magnetic perturbation on locked mode of neoclassical tearing modes[J]. Plasma Science and Technology, 2019, 21(6): 65103-065103. DOI: 10.1088/2058-6272/ab0a18 |
[2] | A A ABID, Quanming LU (陆全明), Huayue CHEN (陈华岳), Yangguang KE (柯阳光), S ALI, Shui WANG (王水). Effects of electron trapping on nonlinear electron-acoustic waves excited by an electron beam via particle-in-cell simulations[J]. Plasma Science and Technology, 2019, 21(5): 55301-055301. DOI: 10.1088/2058-6272/ab033f |
[3] | Jianyuan XIAO (肖建元), Hong QIN (秦宏), Jian LIU (刘健). Structure-preserving geometric particle-in- cell methods for Vlasov-Maxwell systems[J]. Plasma Science and Technology, 2018, 20(11): 110501. DOI: 10.1088/2058-6272/aac3d1 |
[4] | Yunxiao CAO (曹云霄), Zhiqiang WANG (王志强), Jinjun WANG (王进君), Guofeng LI (李国锋). Study of talcum charging status in parallel plate electrostatic separator based on particle trajectory analysis[J]. Plasma Science and Technology, 2018, 20(5): 54019-054019. DOI: 10.1088/2058-6272/aaa195 |
[5] | Linbo GU (顾林波), Yixi CAI (蔡忆昔), Yunxi SHI (施蕴曦), Jing WANG (王静), Xiaoyu PU (濮晓宇), Jing TIAN (田晶), Runlin FAN (樊润林). Effect of indirect non-thermal plasma on particle size distribution and composition of diesel engine particles[J]. Plasma Science and Technology, 2017, 19(11): 115503. DOI: 10.1088/2058-6272/aa7f6e |
[6] | Danijela VUJOŠEVIC, Uroš CVELBAR, Urška REPNIK, Martina MODIC, Saša LAZOVIC, Tina ZAVAŠNIK-BERGANT, Nevena PUAC, Boban MUGOŠA, Evangelos GOGOLIDES, Zoran Lj PETROVIC, Miran MOZETIC. Plasma effects on the bacteria Escherichia coli via two evaluation methods[J]. Plasma Science and Technology, 2017, 19(7): 75504-075504. DOI: 10.1088/2058-6272/aa656b |
[7] | WANG Shijia (王时佳), WANG Shaojie (王少杰). Effect of Fuelling Depth on the Fusion Performance and Particle Confinement of a Fusion Reactor[J]. Plasma Science and Technology, 2016, 18(12): 1155-1161. DOI: 10.1088/1009-0630/18/12/03 |
[8] | JIANG Lina(姜丽娜), WANG Hongyu(王虹宇), SUN Peng(孙鹏). The Single Particle Theory of Backward-Wave Amplifications Based on Electron Cyclotron Maser with a Rectilinear Beam[J]. Plasma Science and Technology, 2014, 16(1): 12-16. DOI: 10.1088/1009-0630/16/1/03 |
[9] | KONG Lingbao (孔令宝), WANG Hongyu (王虹宇), HOU Zhiling (侯志灵), JIN Haibo (金海波). The Self-Consistent Nonlinear Theory of Charged Particle Beam Acceleration by Slowed Circularly Polarized Electromagnetic Waves[J]. Plasma Science and Technology, 2013, 15(12): 1174-1177. DOI: 10.1088/1009-0630/15/12/02 |
[10] | DUAN Yaoyong (段耀勇), GUO Yonghui (郭永辉), QIU Aici (邱爱慈). Shock Wave and Particle Velocities of Typical Metals on Shock Adiabats[J]. Plasma Science and Technology, 2013, 15(8): 727-731. DOI: 10.1088/1009-0630/15/8/02 |
1. | Chen, H., Chen, W. On fast-ion transport induced by edge localized modes. Nuclear Fusion, 2025, 65(3): 036028. DOI:10.1088/1741-4326/adb0df |
2. | Zhang, L.L., Jhang, H.G., Kang, J.S. et al. M3D-K simulations of beam-driven instabilities in an energetic particle dominant KSTAR discharge. Nuclear Fusion, 2024, 64(7): 076001. DOI:10.1088/1741-4326/ad4535 |
3. | Zhang, Y.-N., He, K.-Y., Sun, Y.-W. et al. Influence of the far non-resonant components of high-n resonant magnetic perturbations on energetic passing ions loss. Nuclear Fusion, 2024, 64(4): 046012. DOI:10.1088/1741-4326/ad249e |
4. | Zocco, A., Mishchenko, A., Könies, A. et al. Nonlinear drift-wave and energetic particle long-time behaviour in stellarators: Solution of the kinetic problem. Journal of Plasma Physics, 2023, 89(3): 905890307. DOI:10.1017/S002237782300048X |
5. | Bierwage, A., Shinohara, K., Kazakov, Y.O. et al. Energy-selective confinement of fusion-born alpha particles during internal relaxations in a tokamak plasma. Nature Communications, 2022, 13(1): 3941. DOI:10.1038/s41467-022-31589-6 |
6. | Rhee, T., Kim, J., Kim, K. et al. Simulation study of fast ion losses associated with the rotating n = 1 resonant magnetic perturbations in KSTAR. Nuclear Fusion, 2022, 62(6): 066028. DOI:10.1088/1741-4326/ac5e28 |
7. | Zhu, X., Wang, F., Chen, W. et al. Interaction between energetic-ions and internal kink modes in a weak shear tokamak plasma. Plasma Science and Technology, 2022, 24(2): 025102. DOI:10.1088/2058-6272/ac41be |
8. | Hu, Y., Xu, Y., Hao, B. et al. Effects of resonant magnetic perturbations on neutral beam heating in a tokamak. Physics of Plasmas, 2021, 28(12): 122502. DOI:10.1063/5.0069792 |
9. | Qiu, Z., Chen, L., Zonca, F. et al. Evidence of 'two plasmon' decay of energetic particle induced geodesic acoustic mode. New Journal of Physics, 2021, 23(6): 063045. DOI:10.1088/1367-2630/ac047a |
10. | Sanchis, L., Garcia-Munoz, M., Viezzer, E. et al. Optimizing beam-ion confinement in ITER by adjusting the toroidal phase of the 3D magnetic fields applied for ELM control. Nuclear Fusion, 2021, 61(4): 046006. DOI:10.1088/1741-4326/abdfdd |
11. | White, R., Bierwage, A. Particle resonances in toroidal fusion devices. Physics of Plasmas, 2021, 28(3): 032507. DOI:10.1063/5.0040975 |
12. | Yu, L., Xue, E., Zhang, D. et al. Simulation of the loss of passing fast ions induced by magnetic islands in EAST tokamak plasmas. AIP Advances, 2021, 11(2): 025020. DOI:10.1063/5.0032049 |
13. | Yang, Y.R., Chen, W., Ye, M.Y. et al. Hybrid simulations of reversed shear Alfven eigenmodes and related nonlinear resonance with fast ions in a tokamak plasma. Nuclear Fusion, 2020, 60(10): 106012. DOI:10.1088/1741-4326/aba673 |
14. | Heidbrink, W.W., White, R.B. Mechanisms of energetic-particle transport in magnetically confined plasmas. Physics of Plasmas, 2020, 27(3): 030901. DOI:10.1063/1.5136237 |