Advanced Search+
Junxiao WANG (王俊霄), Lei ZHANG (张雷), Shuqing WANG (王树青), Maogen SU (苏茂根), Duixiong SUN (孙对兄), Jianghua HAN (韩江华), Guofu XIA (夏国富), Chenzhong DONG (董晨钟), Qi MIN (敏琦), Weiguang MA (马维光), Lei DONG (董磊), Wangbao YIN (尹王保), Liantuan XIAO (肖连团), Suotang JIA (贾锁堂). Numerical simulation of laser-induced plasma in background gas considering multiple interaction processes[J]. Plasma Science and Technology, 2021, 23(3): 35001-035001. DOI: 10.1088/2058-6272/abdda3
Citation: Junxiao WANG (王俊霄), Lei ZHANG (张雷), Shuqing WANG (王树青), Maogen SU (苏茂根), Duixiong SUN (孙对兄), Jianghua HAN (韩江华), Guofu XIA (夏国富), Chenzhong DONG (董晨钟), Qi MIN (敏琦), Weiguang MA (马维光), Lei DONG (董磊), Wangbao YIN (尹王保), Liantuan XIAO (肖连团), Suotang JIA (贾锁堂). Numerical simulation of laser-induced plasma in background gas considering multiple interaction processes[J]. Plasma Science and Technology, 2021, 23(3): 35001-035001. DOI: 10.1088/2058-6272/abdda3

Numerical simulation of laser-induced plasma in background gas considering multiple interaction processes

Funds: This work was supported by National Key R&D Program of China (No. 2017YFA0304203); National Energy R&D Center of Petroleum Refining Technology (RIPP, SINOPEC); Changjiang Scholars and Innovative Research Team in University of Ministry of Education of China (No. IRT_17R70); National Natural Science Foundation of China (NSFC) (Nos. 61975103, 61875108, 61775125, 11434007); Major Special Science and Technology Projects in Shanxi (No. 201804D131036); 111 project (No. D18001); Fund for Shanxi ‘1331KSC’.
More Information
  • Received Date: November 03, 2020
  • Revised Date: January 18, 2021
  • Accepted Date: January 18, 2021
  • Laser-induced plasma is often produced in the presence of background gas, which causes some new physical processes. In this work, a two-dimensional axisymmetric radiation fluid dynamics model is used to numerically simulate the expansion process of plasma under different pressures and gases, in which the multiple interaction processes of diffusion, viscosity and heat conduction between the laser ablated target vapor and the background gas are further considered, and the spatio-temporal evolutions of plasma parameters (species number density, expansion velocity, size and electron temperature) as well as the emission spectra are obtained. The consistency between the actual and simulated spectra of aluminum plasma in 1 atm argon verifies the correctness of the model and the numerical simulation, thus providing a refinement analysis method for the basic research of plasma expansion in gases and the application of laser-induced breakdown spectroscopy.
  • [1]
    Anisimov S I, Bäuerle D and Luk’yanchuk B S 1993 Phys. Rev. B 48 12076
    [2]
    Anisimov S I, Luk’yanchuk B S and Luches A 1996 Appl. Surf. Sci. 96–98 24
    [3]
    Bogaerts A et al 2003 Spectrochim. Acta B 58 1867
    [4]
    Gornushkin I B et al 2004 Spectrochim. Acta B 59 401
    [5]
    Wu B X and Shin Y C 2007 Phys. Lett. A 371 128
    [6]
    Irimiciuc Ş A, Mihăilă I and Agop M 2014 Phys. Plasmas 21 093509
    [7]
    Hara H et al 2015 J. Appl. Phys. 118 193301
    [8]
    Su M G et al 2017 Sci. Rep. 7 45212
    [9]
    Chen Z Y and Bogaerts A 2005 J. Appl. Phys. 97 063305
    [10]
    Oumeziane A A, Liani B and Parisse J D 2014 Phys. Plasmas 21 023507
    [11]
    Ho J R, Grigoropoulos C P and Humphrey J A C 1995 J. Appl. Phys. 78 4696
    [12]
    Gusarov A V, Gnedovets A G and Smurov I 2000 J. Appl. Phys. 88 4352
    [13]
    Mazhukin V I et al 2002 J. Quant. Spectrosc. Radiat. Transfer 73 451
    [14]
    Itina T E et al 2002 Phys. Rev. E 66 066406
    [15]
    Shabanov S V and Gornushkin I B 2014 Spectrochim. Acta B 100 147
    [16]
    Zel’dovich Y B and Raizer Y P 1966 Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena (New York: Academic)
    [17]
    Bird R B, Stewart W E and Lightfoot E N 1960 Transport Phenomena (New York: Wiley)
    [18]
    Peraiah A 2002 An Introduction to Radiative Transfer. Methods and Applications in Astrophysics (Cambridge: Cambridge University Press)
    [19]
    Gornushkin I B et al 2001 Spectrochim. Acta B 56 1769
    [20]
    Hou J J et al 2018 J. Quant. Spectrosc. Radiat. Transfer 213 143
    [21]
    Book D L, Boris J P and Hain K 1975 J. Comput. Phys. 18 248
    [22]
    Singh R K and Narayan J 1990 Phys. Rev. B 41 8843
    [23]
    Tan X Y et al 2008 J. Phys. D: Appl. Phys. 41 35210
    [24]
    Tan X Y et al 2008 Chin. Phys. Lett. 25 198
    [25]
    Colombant D and Tonon G F 1973 J. Appl. Phys. 44 3524
    [26]
    Fabbro R, Max C and Fabre E 1985 Phys. Fluids 28 1463
    [27]
    Sakka T, Nakajima T and Ogata Y H 2002 J. Appl. Phys. 92 2296
    [28]
    Yu J L et al 2020 Spectrochim. Acta B 174 105992
    [29]
    Fu Y T et al 2021 Front. Phys. 16 22502
    [30]
    Dawood M S and Margot J 2014 AIP Adv. 4 037111
    [31]
    Chen K R et al 1995 Phys. Rev. Lett. 75 4706
    [32]
    Chen K R et al 1999 Phys. Rev. B 60 8373
    [33]
    Harilal S S et al 2003 J. Appl. Phys. 93 2380
    [34]
    Shaikh N M, Hafeez S and Baig M A 2007 Spectrochim. Acta B 62 1311
  • Related Articles

    [1]Changyan DONG, Hongxia YU, Lanxiang SUN, Yang LI, Xiuye LIU, Ping ZHOU, Shaowen HUANG. Characteristics of laser-induced breakdown spectroscopy of liquid slag[J]. Plasma Science and Technology, 2024, 26(2): 025502. DOI: 10.1088/2058-6272/ad0c25
    [2]Wenzheng LIU (刘文正), Maolin CHAI (柴茂林), Wenlong HU (胡文龙), Luxiang ZHAO (赵潞翔), Jia TIAN (田甲). Generation of atmospheric pressure diffuse dielectric barrier discharge based on multiple potentials in air[J]. Plasma Science and Technology, 2019, 21(7): 74004-074004. DOI: 10.1088/2058-6272/aafdf8
    [3]Haobin PENG (彭浩斌), Guohua CHEN (陈国华), Xiaoxuan CHEN (陈小玄), Zhimin LU (卢志民), Shunchun YAO (姚顺春). Hybrid classification of coal and biomass by laser-induced breakdown spectroscopy combined with K-means and SVM[J]. Plasma Science and Technology, 2019, 21(3): 34008-034008. DOI: 10.1088/2058-6272/aaebc4
    [4]Hongmei DU (杜洪梅), Liping ZHANG (张丽萍), Dongao LI (李东澳). THz plasma wave instability in field effect transistor with electron diffusion current density[J]. Plasma Science and Technology, 2018, 20(11): 115001. DOI: 10.1088/2058-6272/aacaef
    [5]Yang LIU (刘杨), Yue TONG (佟悦), Ying WANG (王莹), Dan ZHANG (张丹), Suyu LI (李苏宇), Yuanfei JIANG (姜远飞), Anmin CHEN (陈安民), Mingxing JIN (金明星). Influence of sample temperature on the expansion dynamics of laser-induced germanium plasma[J]. Plasma Science and Technology, 2017, 19(12): 125501. DOI: 10.1088/2058-6272/aa8acc
    [6]WANG Jinmei (王金梅), ZHENG Peichao (郑培超), LIU Hongdi (刘红弟), FANG Liang (方亮). Spectral Characteristics of Laser-Induced Graphite Plasma in Ambient Air[J]. Plasma Science and Technology, 2016, 18(11): 1123-1129. DOI: 10.1088/1009-0630/18/11/11
    [7]ZHENG Zhiyuan(郑志远), GAO Hua(高华), FAN Zhenjun(樊振军), XING Jie(邢杰). Characteristics of Droplets Ejected from Liquid Propellants Ablated by Laser Pulses in Laser Plasma Propulsion[J]. Plasma Science and Technology, 2014, 16(3): 251-254. DOI: 10.1088/1009-0630/16/3/14
    [8]YU Xingang (余新刚), GOU Fujun (苟富均). Molecular Dynamics Study on the Diffusion Properties of Hydrogen Atoms in Bulk Tungsten[J]. Plasma Science and Technology, 2013, 15(7): 710-715. DOI: 10.1088/1009-0630/15/7/19
    [9]FANG Juan(方娟), HONG Yanji(洪延姬), LI Qian(李倩). Numerical Analysis of Interaction Between Single-Pulse Laser-Induced Plasma and Bow Shock in a Supersonic Flow[J]. Plasma Science and Technology, 2012, 14(8): 741-746. DOI: 10.1088/1009-0630/14/8/11
    [10]ZHOU Chenglong (周铖龙), MA Yugang (马余刚), FANG Deqing (方德清). Shear Viscosity to Entropy Density Ratio in Au+Au Central Collisions[J]. Plasma Science and Technology, 2012, 14(7): 585-587. DOI: 10.1088/1009-0630/14/7/04

Catalog

    Article views (223) PDF downloads (377) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return