Advanced Search+
Junxiao WANG (王俊霄), Lei ZHANG (张雷), Shuqing WANG (王树青), Maogen SU (苏茂根), Duixiong SUN (孙对兄), Jianghua HAN (韩江华), Guofu XIA (夏国富), Chenzhong DONG (董晨钟), Qi MIN (敏琦), Weiguang MA (马维光), Lei DONG (董磊), Wangbao YIN (尹王保), Liantuan XIAO (肖连团), Suotang JIA (贾锁堂). Numerical simulation of laser-induced plasma in background gas considering multiple interaction processes[J]. Plasma Science and Technology, 2021, 23(3): 35001-035001. DOI: 10.1088/2058-6272/abdda3
Citation: Junxiao WANG (王俊霄), Lei ZHANG (张雷), Shuqing WANG (王树青), Maogen SU (苏茂根), Duixiong SUN (孙对兄), Jianghua HAN (韩江华), Guofu XIA (夏国富), Chenzhong DONG (董晨钟), Qi MIN (敏琦), Weiguang MA (马维光), Lei DONG (董磊), Wangbao YIN (尹王保), Liantuan XIAO (肖连团), Suotang JIA (贾锁堂). Numerical simulation of laser-induced plasma in background gas considering multiple interaction processes[J]. Plasma Science and Technology, 2021, 23(3): 35001-035001. DOI: 10.1088/2058-6272/abdda3

Numerical simulation of laser-induced plasma in background gas considering multiple interaction processes

Funds: This work was supported by National Key R&D Program of China (No. 2017YFA0304203); National Energy R&D Center of Petroleum Refining Technology (RIPP, SINOPEC); Changjiang Scholars and Innovative Research Team in University of Ministry of Education of China (No. IRT_17R70); National Natural Science Foundation of China (NSFC) (Nos. 61975103, 61875108, 61775125, 11434007); Major Special Science and Technology Projects in Shanxi (No. 201804D131036); 111 project (No. D18001); Fund for Shanxi ‘1331KSC’.
More Information
  • Received Date: November 03, 2020
  • Revised Date: January 18, 2021
  • Accepted Date: January 18, 2021
  • Laser-induced plasma is often produced in the presence of background gas, which causes some new physical processes. In this work, a two-dimensional axisymmetric radiation fluid dynamics model is used to numerically simulate the expansion process of plasma under different pressures and gases, in which the multiple interaction processes of diffusion, viscosity and heat conduction between the laser ablated target vapor and the background gas are further considered, and the spatio-temporal evolutions of plasma parameters (species number density, expansion velocity, size and electron temperature) as well as the emission spectra are obtained. The consistency between the actual and simulated spectra of aluminum plasma in 1 atm argon verifies the correctness of the model and the numerical simulation, thus providing a refinement analysis method for the basic research of plasma expansion in gases and the application of laser-induced breakdown spectroscopy.
  • [1]
    Anisimov S I, Bäuerle D and Luk’yanchuk B S 1993 Phys. Rev. B 48 12076
    [2]
    Anisimov S I, Luk’yanchuk B S and Luches A 1996 Appl. Surf. Sci. 96–98 24
    [3]
    Bogaerts A et al 2003 Spectrochim. Acta B 58 1867
    [4]
    Gornushkin I B et al 2004 Spectrochim. Acta B 59 401
    [5]
    Wu B X and Shin Y C 2007 Phys. Lett. A 371 128
    [6]
    Irimiciuc Ş A, Mihăilă I and Agop M 2014 Phys. Plasmas 21 093509
    [7]
    Hara H et al 2015 J. Appl. Phys. 118 193301
    [8]
    Su M G et al 2017 Sci. Rep. 7 45212
    [9]
    Chen Z Y and Bogaerts A 2005 J. Appl. Phys. 97 063305
    [10]
    Oumeziane A A, Liani B and Parisse J D 2014 Phys. Plasmas 21 023507
    [11]
    Ho J R, Grigoropoulos C P and Humphrey J A C 1995 J. Appl. Phys. 78 4696
    [12]
    Gusarov A V, Gnedovets A G and Smurov I 2000 J. Appl. Phys. 88 4352
    [13]
    Mazhukin V I et al 2002 J. Quant. Spectrosc. Radiat. Transfer 73 451
    [14]
    Itina T E et al 2002 Phys. Rev. E 66 066406
    [15]
    Shabanov S V and Gornushkin I B 2014 Spectrochim. Acta B 100 147
    [16]
    Zel’dovich Y B and Raizer Y P 1966 Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena (New York: Academic)
    [17]
    Bird R B, Stewart W E and Lightfoot E N 1960 Transport Phenomena (New York: Wiley)
    [18]
    Peraiah A 2002 An Introduction to Radiative Transfer. Methods and Applications in Astrophysics (Cambridge: Cambridge University Press)
    [19]
    Gornushkin I B et al 2001 Spectrochim. Acta B 56 1769
    [20]
    Hou J J et al 2018 J. Quant. Spectrosc. Radiat. Transfer 213 143
    [21]
    Book D L, Boris J P and Hain K 1975 J. Comput. Phys. 18 248
    [22]
    Singh R K and Narayan J 1990 Phys. Rev. B 41 8843
    [23]
    Tan X Y et al 2008 J. Phys. D: Appl. Phys. 41 35210
    [24]
    Tan X Y et al 2008 Chin. Phys. Lett. 25 198
    [25]
    Colombant D and Tonon G F 1973 J. Appl. Phys. 44 3524
    [26]
    Fabbro R, Max C and Fabre E 1985 Phys. Fluids 28 1463
    [27]
    Sakka T, Nakajima T and Ogata Y H 2002 J. Appl. Phys. 92 2296
    [28]
    Yu J L et al 2020 Spectrochim. Acta B 174 105992
    [29]
    Fu Y T et al 2021 Front. Phys. 16 22502
    [30]
    Dawood M S and Margot J 2014 AIP Adv. 4 037111
    [31]
    Chen K R et al 1995 Phys. Rev. Lett. 75 4706
    [32]
    Chen K R et al 1999 Phys. Rev. B 60 8373
    [33]
    Harilal S S et al 2003 J. Appl. Phys. 93 2380
    [34]
    Shaikh N M, Hafeez S and Baig M A 2007 Spectrochim. Acta B 62 1311
  • Related Articles

    [1]Yuqing YANG (杨宇晴), Xinjun ZHANG (张新军), Yanping ZHAO (赵燕平), Chengming QIN (秦成明), Yan CHENG (程艳), Yuzhou MAO (毛玉周), Hua YANG (杨桦), Jianhua WANG (王健华), Shuai YUAN (袁帅), Lei WANG (王磊), Songqing JU (琚松青), Gen CHEN (陈根), Xu DENG, (邓旭), Kai ZHANG (张开), Baonian WAN (万宝年), Jiangang LI (李建刚), Yuntao SONG (宋云涛), Xianzu GONG (龚先祖), Jinping QIAN (钱金平), Tao ZHANG (张涛). Recent ICRF coupling experiments on EAST[J]. Plasma Science and Technology, 2018, 20(4): 45102-045102. DOI: 10.1088/2058-6272/aaa599
    [2]CHEN Gen (陈根), QIN Chengming (秦成明), MAO Yuzhou (毛玉周), ZHAO Yanping (赵燕平), YUAN Shuai (袁帅), ZHANG Xinjun (张新军). Power Compensation for ICRF Heating in EAST[J]. Plasma Science and Technology, 2016, 18(8): 870-874. DOI: 10.1088/1009-0630/18/8/14
    [3]LI Changzheng(李长征), HU Jiansheng(胡建生), CHEN Yue(陈跃), LIANG Yunfeng(梁云峰), LI Jiangang(李建刚), LI Jiahong(李加宏), WU Jinhua(吴金华), HAN Xiang(韩翔). First Results of Pellet Injection Experiments on EAST[J]. Plasma Science and Technology, 2014, 16(10): 913-918. DOI: 10.1088/1009-0630/16/10/03
    [4]WANG Fuqiong(王福琼), CHEN Yiping(陈一平), HU Liqun(胡立群). DIVIMP Modeling of Impurity Transport in EAST[J]. Plasma Science and Technology, 2014, 16(7): 642-649. DOI: 10.1088/1009-0630/16/7/03
    [5]ZHANG Shoubiao(张寿彪), GAO Xiang(高翔), LING Bili(凌必利), WANG Yumin(王嵎民), ZHANG Tao(张涛), HAN Xiang(韩翔), LIU Zixi(刘子奚), BU Jingliang(布景亮), LI Jiangang(李建刚), EAST team. Density Profile and Fluctuation Measurements by Microwave Reflectometry on EAST[J]. Plasma Science and Technology, 2014, 16(4): 311-315. DOI: 10.1088/1009-0630/16/4/02
    [6]JI Xiang (戢翔), SONG Yuntao (宋云涛), SHEN Guang (沈光), CAO Lei (曹磊), ZHOU Zibo (周自波), XU Tiejun (许铁军), LIU Xufeng (刘旭峰), XU Weiwei (徐薇薇), PENG Xuebing (彭学兵), WANG Shengming (王声铭), et al. Optimization and Update of EAST In-Vessel Components in 2011[J]. Plasma Science and Technology, 2013, 15(3): 277-281. DOI: 10.1088/1009-0630/15/3/17
    [7]QIU Lilong (邱立龙), ZHUANG Ming (庄明), MAO Jin (毛晋), HU Liangbing (胡良兵), SHENG Linhai (盛林海). Optimization analysis and simulation of the EAST cryogenic system[J]. Plasma Science and Technology, 2012, 14(11): 1030-1034. DOI: 10.1088/1009-0630/14/11/13
    [8]LI Jibo(李吉波), DING Siye(丁斯晔), WU Bin(吴斌), HU Chundong(胡纯栋). Simulations of Neutral Beam Ion Ripple Loss on EAST[J]. Plasma Science and Technology, 2012, 14(1): 78-82. DOI: 10.1088/1009-0630/14/1/17
    [9]YANG Yao, GAO Xiang, the EAST team. Energy Confinement of both Ohmic and LHW Plasma on EAST[J]. Plasma Science and Technology, 2011, 13(3): 312-315.
    [10]LUO Zhengping, XIAO Bingjia, J. A. LEUER, M. L. WALKER, YUAN Qiping. Eddy Calculation and Vacuum Field Reconstruction on EAST[J]. Plasma Science and Technology, 2011, 13(2): 145-152.

Catalog

    Article views (223) PDF downloads (377) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return