Advanced Search+
Suresh BASNET, Atit DEUJA, Raju KHANAL. Kinetic-theory-based investigation of electronegative plasma–wall transition with two populations of electrons[J]. Plasma Science and Technology, 2021, 23(3): 35002-035002. DOI: 10.1088/2058-6272/abde1d
Citation: Suresh BASNET, Atit DEUJA, Raju KHANAL. Kinetic-theory-based investigation of electronegative plasma–wall transition with two populations of electrons[J]. Plasma Science and Technology, 2021, 23(3): 35002-035002. DOI: 10.1088/2058-6272/abde1d

Kinetic-theory-based investigation of electronegative plasma–wall transition with two populations of electrons

Funds: S Basnet would like to acknowledge the University Grants Commission, Nepal for the PhD fellowship PhD/075-76-S&T-16.

More Information
  • Received Date: August 19, 2020
  • Revised Date: January 19, 2021
  • Accepted Date: January 19, 2021
  • Kinetic theory has been employed to investigate the magnetized plasma-sheath structure and its
    characteristics in the presence of more than one species of negatively charged particles: hot electrons,
    cold electrons, and negative ions. The cold electrons and negative ions are considered to obey a
    Maxwellian distribution, whereas the hot electrons follow a truncated Maxwellian distribution. The
    Bohm sheath condition has been extended for the case of more than one species of negatively
    charged particles, in which the concentration of hot electrons has a crucial role in achieving the
    Bohm velocity. The thermal motion of hot electrons is much higher compared to cold electrons and
    negative ions, such that the variation of hot electron concentrations and the temperature ratio of hot to
    cold electrons play a key role in the determination of the plasma-sheath parameters: particle densities,
    electrostatic potential, the flow of positive ions towards the wall, and sheath thickness. We have
    estimated the deviation of the resultant drift velocity of positive ions on the plane perpendicular to the
    wall from the parallel component at the presheath–sheath interface. It is found that the deviation
    between the two velocity components increases with an increase in the obliqueness of the magnetic
    field. Furthermore, the results obtained from the kinetic trajectory simulation model are compared
    with the results obtained using a fluid model; the results are qualitatively similar, although the
    potential varies by less than 4% in terms of the magnitude at the wall.
  • [1]
    Chodura R 1982 Phys. Fluids 25 1628
    [2]
    Vender D et al 1995 Phys. Rev. E 51 2436
    [3]
    Fu Y et al 2018 Phys. Plasmas 25 013530
    [4]
    Tskhakaya D and Kuhn S 2004 Contrib Plamsa Phys. 44 577
    [5]
    Riemann K U 1991 J. Phys. D: Appl. Phys. 24 493
    [6]
    Weng Y and Kushner M J 1992 J. Appl. Phys. 72 33
    [7]
    Song S B, Chang C S and Choi D I 1997 Phys. Rev. E 55 1213
    [8]
    Plihon N and Chabert P 2011 Phys. Plasmas 18 082102
    [9]
    Ghim (Kim) Y C and Hershkowitz N 2009 Appl. Phys. Lett. 94 151503
    [10]
    Sheridan T E, Goeckner M J and Goree J 1991 J. Vac. Sci. Technol. A 9 688
    [11]
    Stangeby P C 1995 Plasma Phys. Contol. Fusion 37 1031
    [12]
    Sheridan T E, Chabert P and Boswel R W 1999 Plasma Sources Sci. Technol. 8 457
    [13]
    Palop J I F et al 2006 Appl. Phys. Lett. 88 261502
    [14]
    Oudini N et al 2013 Phys. Plasmas 20 043501
    [15]
    Aslaninejad M and Yasserian K 2016 Phys. Plasmas 23 053505
    [16]
    Franklin R N 2002 Plasma Sources Sci. Technol. 11 A31
    [17]
    Hussain S, Akhtar N and Mahmood S 2013 Phys. Plasmas 20 092303
    [18]
    Chabert P, Lichtenberg A J and Lieberman M A 2007 Phys. Plasmas 14 093502
    [19]
    Chung T H 2009 Phys. Plasmas 16 063503
    [20]
    Ji Y K et al 2011 Plasma Sci. Technol. 13 519
    [21]
    Liu H P, Zou X and Qiu M H 2014 Plasma Sci. Technol. 16 633
    [22]
    Borgohain D R, Saharia K and Goswami K S 2016 Phys. Plasmas 23 122113
    [23]
    Čerček M, Gyergyek T and Stanojević M 1999 Contrib. Plasma Phys. 39 541
    [24]
    Gyergyek T, Jurčič-Zlobec B and Čerček M 2008 Phys. Plasmas 15 063501
    [25]
    Gyergyek T et al 2009 Plasma Sources Sci. Technol. 18 035001
    [26]
    Ou J et al 2013 Phys. Plasmas 20 063502
    [27]
    Sharma G et al 2020 Phys. Scr. 95 035605
    [28]
    Oudini N et al 2013 Phys. Plasmas 20 103506
    [29]
    Chabert P 2016 Plasma Sources Sci. and Technol. 25 025010
    [30]
    Bohm D 1949 Minimum ionic kinetic energy for a stable sheath The Characteristics of Electrical Discharges in Magnetic Fields (New York: McGraw-Hill) p 77
    [31]
    Basnet S and Khanal R 2020 Plasma Sci. Technol. 22 045001
    [32]
    Pedit H and Kuhn S 1994 Phys. Plasmas 1 13
    [33]
    Chalise R and Khanal R 2012 Plasma Phys. Control. Fusion 54 095006
    [34]
    Adhikari B R et al 2019 AIP Adv. 9 055123
    [35]
    Jones W D et al 1975 Phys. Rev. Lett. 35 1349
    [36]
    Bogdanov E A and Kudryavtsev A A 2001 Tech. Phys. Lett. 27 905
    [37]
    Braithwaite N, St J and Allen J E 1988 J. Phys. D: Appl. Phys. 21 1733
    [38]
    Boruah D et al 2003 J. Phys. D: Appl. Phys. 36 645
    [39]
    Siddiqui M U et al 2014 Phys. Plasmas 21 102103
    [40]
    Basnet S and Khanal R 2019 Phys. Plasmas 26 043516
  • Cited by

    Periodical cited type(8)

    1. Cui, Z., Wu, H., Wu, D. et al. Spatiotemporal Evolution of Aluminum-lithium Alloy Plasma Using a Coaxial LIBS System under Vacuum | [真空中同轴LIBS系统下铝锂合金等离子体时空演化行为研究]. Guangzi Xuebao/Acta Photonica Sinica, 2023, 52(9): 0930002. DOI:10.3788/gzxb20235209.0930002
    2. Li, C., Li, Q., Li, L. et al. Characteristic of spatiotemporal evolution of hydrogen isotope in laser-induced plasma under low-pressure environment. Spectrochimica Acta - Part B Atomic Spectroscopy, 2023. DOI:10.1016/j.sab.2023.106735
    3. Yuan, S., Wu, D., Wu, H.-C. et al. Study on the Temporal and Spatial Evolution of Optical Emission From the Laser Induced Multi-Component Plasma of Tungsten Carbide Copper Alloy in Vacuum | [真空下激光烧蚀碳化钨铜多组分等离子体发射光谱的时空演化研究]. Guang Pu Xue Yu Guang Pu Fen Xi/Spectroscopy and Spectral Analysis, 2023, 43(5): 1384-1400. DOI:10.3964/j.issn.1000-0593(2023)05-1394-07
    4. Hang, Y.-H., Qiu, Y., Zhou, Y. et al. Effects of pulse energy ratios on plasma characteristics of dual-pulse fiber-optic laser-induced breakdown spectroscopy. Chinese Physics B, 2022, 31(2): 024212. DOI:10.1088/1674-1056/ac1fdb
    5. Dwivedi, V., Veis, M., Marín Roldán, A. et al. CF-LIBS study of pure Ta, and WTa + D coating as fusion-relevant materials: a step towards future in situ compositional quantification at atmospheric pressure. European Physical Journal Plus, 2021, 136(11): 1177. DOI:10.1140/epjp/s13360-021-02179-0
    6. Wu, H., Li, C., Wu, D. et al. Characterization of laser-induced breakdown spectroscopy on tungsten at variable ablation angles using a coaxial system in a vacuum. Journal of Analytical Atomic Spectrometry, 2021, 36(10): 2074-2084. DOI:10.1039/d1ja00196e
    7. Xue, B., Tian, Y., Li, N. et al. Spatiotemporal and spectroscopic investigations of the secondary plasma generated during double-pulse laser-induced breakdown in bulk water. Journal of Analytical Atomic Spectrometry, 2020, 35(12): 2880-2892. DOI:10.1039/d0ja00139b
    8. Hou, Z., Jeong, S., Deguchi, Y. et al. Way-out for laser-induced breakdown spectroscopy. Plasma Science and Technology, 2020, 22(7): 070101. DOI:10.1088/2058-6272/ab95f7

    Other cited types(0)

Catalog

    Article views (175) PDF downloads (322) Cited by(8)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return