Citation: | Suresh BASNET, Atit DEUJA, Raju KHANAL. Kinetic-theory-based investigation of electronegative plasma–wall transition with two populations of electrons[J]. Plasma Science and Technology, 2021, 23(3): 35002-035002. DOI: 10.1088/2058-6272/abde1d |
[1] |
Chodura R 1982 Phys. Fluids 25 1628
|
[2] |
Vender D et al 1995 Phys. Rev. E 51 2436
|
[3] |
Fu Y et al 2018 Phys. Plasmas 25 013530
|
[4] |
Tskhakaya D and Kuhn S 2004 Contrib Plamsa Phys. 44 577
|
[5] |
Riemann K U 1991 J. Phys. D: Appl. Phys. 24 493
|
[6] |
Weng Y and Kushner M J 1992 J. Appl. Phys. 72 33
|
[7] |
Song S B, Chang C S and Choi D I 1997 Phys. Rev. E 55 1213
|
[8] |
Plihon N and Chabert P 2011 Phys. Plasmas 18 082102
|
[9] |
Ghim (Kim) Y C and Hershkowitz N 2009 Appl. Phys. Lett. 94 151503
|
[10] |
Sheridan T E, Goeckner M J and Goree J 1991 J. Vac. Sci. Technol. A 9 688
|
[11] |
Stangeby P C 1995 Plasma Phys. Contol. Fusion 37 1031
|
[12] |
Sheridan T E, Chabert P and Boswel R W 1999 Plasma Sources Sci. Technol. 8 457
|
[13] |
Palop J I F et al 2006 Appl. Phys. Lett. 88 261502
|
[14] |
Oudini N et al 2013 Phys. Plasmas 20 043501
|
[15] |
Aslaninejad M and Yasserian K 2016 Phys. Plasmas 23 053505
|
[16] |
Franklin R N 2002 Plasma Sources Sci. Technol. 11 A31
|
[17] |
Hussain S, Akhtar N and Mahmood S 2013 Phys. Plasmas 20 092303
|
[18] |
Chabert P, Lichtenberg A J and Lieberman M A 2007 Phys. Plasmas 14 093502
|
[19] |
Chung T H 2009 Phys. Plasmas 16 063503
|
[20] |
Ji Y K et al 2011 Plasma Sci. Technol. 13 519
|
[21] |
Liu H P, Zou X and Qiu M H 2014 Plasma Sci. Technol. 16 633
|
[22] |
Borgohain D R, Saharia K and Goswami K S 2016 Phys. Plasmas 23 122113
|
[23] |
Čerček M, Gyergyek T and Stanojević M 1999 Contrib. Plasma Phys. 39 541
|
[24] |
Gyergyek T, Jurčič-Zlobec B and Čerček M 2008 Phys. Plasmas 15 063501
|
[25] |
Gyergyek T et al 2009 Plasma Sources Sci. Technol. 18 035001
|
[26] |
Ou J et al 2013 Phys. Plasmas 20 063502
|
[27] |
Sharma G et al 2020 Phys. Scr. 95 035605
|
[28] |
Oudini N et al 2013 Phys. Plasmas 20 103506
|
[29] |
Chabert P 2016 Plasma Sources Sci. and Technol. 25 025010
|
[30] |
Bohm D 1949 Minimum ionic kinetic energy for a stable sheath The Characteristics of Electrical Discharges in Magnetic Fields (New York: McGraw-Hill) p 77
|
[31] |
Basnet S and Khanal R 2020 Plasma Sci. Technol. 22 045001
|
[32] |
Pedit H and Kuhn S 1994 Phys. Plasmas 1 13
|
[33] |
Chalise R and Khanal R 2012 Plasma Phys. Control. Fusion 54 095006
|
[34] |
Adhikari B R et al 2019 AIP Adv. 9 055123
|
[35] |
Jones W D et al 1975 Phys. Rev. Lett. 35 1349
|
[36] |
Bogdanov E A and Kudryavtsev A A 2001 Tech. Phys. Lett. 27 905
|
[37] |
Braithwaite N, St J and Allen J E 1988 J. Phys. D: Appl. Phys. 21 1733
|
[38] |
Boruah D et al 2003 J. Phys. D: Appl. Phys. 36 645
|
[39] |
Siddiqui M U et al 2014 Phys. Plasmas 21 102103
|
[40] |
Basnet S and Khanal R 2019 Phys. Plasmas 26 043516
|
1. | Cui, Z., Wu, H., Wu, D. et al. Spatiotemporal Evolution of Aluminum-lithium Alloy Plasma Using a Coaxial LIBS System under Vacuum | [真空中同轴LIBS系统下铝锂合金等离子体时空演化行为研究]. Guangzi Xuebao/Acta Photonica Sinica, 2023, 52(9): 0930002. DOI:10.3788/gzxb20235209.0930002 | |
2. | Li, C., Li, Q., Li, L. et al. Characteristic of spatiotemporal evolution of hydrogen isotope in laser-induced plasma under low-pressure environment. Spectrochimica Acta - Part B Atomic Spectroscopy, 2023. DOI:10.1016/j.sab.2023.106735 | |
3. | Yuan, S., Wu, D., Wu, H.-C. et al. Study on the Temporal and Spatial Evolution of Optical Emission From the Laser Induced Multi-Component Plasma of Tungsten Carbide Copper Alloy in Vacuum | [真空下激光烧蚀碳化钨铜多组分等离子体发射光谱的时空演化研究]. Guang Pu Xue Yu Guang Pu Fen Xi/Spectroscopy and Spectral Analysis, 2023, 43(5): 1384-1400. DOI:10.3964/j.issn.1000-0593(2023)05-1394-07 | |
4. | Hang, Y.-H., Qiu, Y., Zhou, Y. et al. Effects of pulse energy ratios on plasma characteristics of dual-pulse fiber-optic laser-induced breakdown spectroscopy. Chinese Physics B, 2022, 31(2): 024212. DOI:10.1088/1674-1056/ac1fdb | |
5. | Dwivedi, V., Veis, M., Marín Roldán, A. et al. CF-LIBS study of pure Ta, and WTa + D coating as fusion-relevant materials: a step towards future in situ compositional quantification at atmospheric pressure. European Physical Journal Plus, 2021, 136(11): 1177. DOI:10.1140/epjp/s13360-021-02179-0 | |
6. | Wu, H., Li, C., Wu, D. et al. Characterization of laser-induced breakdown spectroscopy on tungsten at variable ablation angles using a coaxial system in a vacuum. Journal of Analytical Atomic Spectrometry, 2021, 36(10): 2074-2084. DOI:10.1039/d1ja00196e | |
7. | Xue, B., Tian, Y., Li, N. et al. Spatiotemporal and spectroscopic investigations of the secondary plasma generated during double-pulse laser-induced breakdown in bulk water. Journal of Analytical Atomic Spectrometry, 2020, 35(12): 2880-2892. DOI:10.1039/d0ja00139b | |
8. | Hou, Z., Jeong, S., Deguchi, Y. et al. Way-out for laser-induced breakdown spectroscopy. Plasma Science and Technology, 2020, 22(7): 070101. DOI:10.1088/2058-6272/ab95f7 |