Advanced Search+
Xiangyu ZHOU (周翔宇), Qiao WANG (王乔), Dong DAI (戴栋), Zeen HUANG (黄泽恩). Multiple current peaks and spatial characteristics of atmospheric helium dielectric barrier discharges with repetitive unipolar narrow pulse excitation[J]. Plasma Science and Technology, 2021, 23(6): 64003-064003. DOI: 10.1088/2058-6272/abea72
Citation: Xiangyu ZHOU (周翔宇), Qiao WANG (王乔), Dong DAI (戴栋), Zeen HUANG (黄泽恩). Multiple current peaks and spatial characteristics of atmospheric helium dielectric barrier discharges with repetitive unipolar narrow pulse excitation[J]. Plasma Science and Technology, 2021, 23(6): 64003-064003. DOI: 10.1088/2058-6272/abea72

Multiple current peaks and spatial characteristics of atmospheric helium dielectric barrier discharges with repetitive unipolar narrow pulse excitation

Funds: This work is supported by National Natural Science Foundation of China (No. 51877086).
More Information
  • Received Date: December 03, 2020
  • Revised Date: February 23, 2021
  • Accepted Date: February 25, 2021
  • Atmospheric dielectric barrier discharges driven by repetitive unipolar narrow pulse excitation are investigated numerically by using one-dimensional fluid models. The one-dimensional simulation focuses on the effects of applied voltage amplitude, pulse repetition frequency, gap width and γ coefficient on the multiple-current-pulse (MCP) discharge. The results indicate that the MCP behavior will lead to the stratification of electron density distribution in axial direction. Traditional MCP manipulating methods, such as reducing the applied voltage amplitude, increasing the applied voltage frequency, adjusting the gap width, cannot regulate MCPs exhibiting in this work. Further analyses reveal that the increasing electric field of the cathode fall region is the basis for the emergence of MCP behavior.
  • [1]
    Fang Z et al 2017 IEEE Trans. Plasma Sci. 45 310
    [2]
    Nguyen H P et al 2018 J. Clean. Prod. 198 1232
    [3]
    Shao T et al 2010 Appl. Surf. Sci. 256 3888
    [4]
    Zhen Y et al 2018 High Volt. 3 154
    [5]
    Chen Q et al 2020 High Volt. Eng. 46 3715 (in Chinese)
    [6]
    Yang Y et al 2020 High Volt. Eng. 46 4355 (in Chinese)
    [7]
    Miao C et al 2019 High Volt. Eng. 45 1945 (in Chinese)
    [8]
    Golubovskii Y B et al 2002 J. Phys. D: Appl. Phys. 36 39
    [9]
    Shin J et al 2003 J. Appl. Phys. 94 7408
    [10]
    Zhang Y et al 2008 Thin Solid Films 516 7547
    [11]
    Zhang Y et al 2018 AIP Adv. 8 035008
    [12]
    Zhang Y et al 2019 Plasma Sources Sci. Technol. 28 104001
    [13]
    Zhang Y et al 2019 J. Phys. D: Appl. Phys. 52 045203
    [14]
    Walsh J L et al 2012 Plasma Sources Sci. Technol. 21 034008
    [15]
    Brauer I et al 1999 J. Appl. Phys. 85 7569
    [16]
    Hao Y et al 2014 Phys. Plasmas 21 013503
    [17]
    Wan J et al 2019 Phys. Plasmas 26 103510
    [18]
    Wang Q et al 2019 J. Phys. D: Appl. Phys. 52 205201
    [19]
    Zhang Y et al 2019 Plasma Sources Sci. Technol. 28 075003
    [20]
    Zhang Y et al 2005 Phys. Plasmas 12 103508
    [21]
    Zhao Z et al 2020 High Volt. 5 569
    [22]
    Ayan H et al 2008 IEEE Trans. Plasma Sci. 36 504
    [23]
    Bozhko I V et al 2017 IEEE Trans. Plasma Sci. 45 3064
    [24]
    Guo H et al 2018 Phys. Plasmas 25 093505
    [25]
    Laroussi M et al 2004 J. Appl. Phys. 96 3028
    [26]
    Zhang S et al 2019 Spectrochim. Acta A 207 294
    [27]
    Shao T et al 2018 High Volt. 3 14
    [28]
    Liu S et al 2001 J. Phys. D: Appl. Phys. 34 1632
    [29]
    Truong H T et al 2019 Japan. J. Appl. Phys. 58 111001
    [30]
    Xu Y et al 2020 Plasma Sci. Technol. 22 055403
    [31]
    Tang J et al 2019 Plasma Sci. Technol. 21 044001
    [32]
    Wei L et al 2018 Plasma Sci. Technol. 20 125505
    [33]
    Shao T et al 2008 J. Phys. D: Appl. Phys. 41 215203
    [34]
    Shao T et al 2010 IEEE Trans. Dielectr. Electr. Insul. 17 1830
    [35]
    Chen B et al 2011 IEEE Trans. Plasma Sci. 39 1949
    [36]
    Bletzinger P et al 2003 J. Phys. D: Appl. Phys. 36 1550
    [37]
    Gao K et al 2019 AIP Adv. 9 115210
    [38]
    Chen B et al 2012 Vacuum 86 1992
    [39]
    Borcia G et al 2009 Rom. J. Phys. 54 689
    [40]
    Bogdanov E A et al 2006 Contrib. Plasma Phys. 46 807
    [41]
    Huang X et al 2011 Thin Solid Films 519 7036
    [42]
    Shao T et al 2013 J. Appl. Phys. 113 093301
    [43]
    Yu S et al 2016 Phys. Plasmas 23 023510
    [44]
    Zhang P et al 2005 J. Phys. D: Appl. Phys. 39 153
    [45]
    Stollenwerk L et al 2006 Phys. Rev. Lett. 96 255001
    [46]
    Huang Z et al 2015 Phys. Plasmas 22 123509
    [47]
    Bhoj A N et al 2011 IEEE Trans. Plasma Sci. 39 2152
    [48]
    Wang Q et al 2011 Phys. Plasmas 18 103504
    [49]
    Stewart R A et al 1991 J. Appl. Phys. 70 3481
    [50]
    Petra C G et al 2014 Comput. Sci. Eng. 16 32
    [51]
    Wang Q et al 2020 Plasma Process. Polym. 17 1900182
    [52]
    Plasma module of COMSOL Multiphysics http://comsol.com/plasma-module/
    [53]
    Lazarou C et al 2016 Plasma Sources Sci. Technol. 25 055023
    [54]
    Hagelaar G J M et al 2005 Plasma Sources Sci. Technol.14 722
    [55]
    Purwins H G et al 2014 Plasma Phys. Control. Fusion 56 123001
    [56]
    Raizer Y P et al 1991 Gas Discharge Physics (Berlin:Springer)
    [57]
    Ellis H W et al 1976 At. Data Nucl. Data Tables 17 177
    [58]
    Zhang J et al 2018 IEEE Trans. Plasma Sci. 46 19
    [59]
    Iza F et al 2009 IEEE Trans. Plasma Sci. 37 1289
    [60]
    Lu X et al 2008 Appl. Phys. Lett. 92 051501
    [61]
    Donkó Z et al 2011 Appl. Phys. Lett. 98 251502
    [62]
    Zhang Y et al 2018 Phys. Plasmas 25 023509
    [63]
    Zhang Y et al 2018 AIP Adv. 8 095327
    [64]
    Zhang D et al 2012 Phys. Plasmas 19 123511
    [65]
    Lu X et al 2009 IEEE Trans. Plasma Sci. 37 647
    [66]
    Ning W et al 2017 Phys. Plasmas 24 073509
    [67]
    Dai D et al 2011 Appl. Phys. Lett. 98 131503
    [68]
    Nikandrov D S et al 2008 IEEE Trans. Plasma Sci. 36 131
    [69]
    Levko D et al 2019 Phys. Plasmas 26 064502
    [70]
    Huang B et al 2013 J. Phys. D: Appl. Phys. 46 464011
    [71]
    Wang C et al 2019 Phys. Plasmas 26 123506
    [72]
    Nikandrov D S 2005 Tech. Phys. 50 1284
    [73]
    Kolobov V I 2013 Phys. Plasmas 20 101610
    [74]
    Golubovskii Y B et al 2003 J. Phys. D: Appl. Phys. 36 975
    [75]
    Akishev Y S et al 2001 Plasma Phys. Rep. 27 164
    [76]
    Wang D et al 2006 Thin Solid Films 506–507 384
    [77]
    Petrović D et al 2009 J. Phys. D: Appl. Phys. 42 205206
    [78]
    Massines F et al 2003 Surf. Coat. Technol. 174–175 8
    [79]
    Massines F et al 2005 Plasma Phys. Control. Fusion 47B577
    [80]
    Golubovskii Y B et al 2002 J. Phys. D: Appl. Phys. 35 751
  • Related Articles

    [1]Xin ZENG (曾鑫), Yafang ZHANG (章亚芳), Liangyin GUO (郭良银), Wenquan GU (古文泉), Ping YUAN (袁萍), Linsheng WEI (魏林生). Ozone generation enhanced by silica catalyst in packed-bed DBD reactor[J]. Plasma Science and Technology, 2021, 23(8): 85501-085501. DOI: 10.1088/2058-6272/ac0244
    [2]Yuchuan QIN (秦豫川), Shulou QIAN (钱树楼), Cheng WANG (王城), Weidong XIA (夏维东). Effects of nitrogen on ozone synthesis in packed-bed dielectric barrier discharge[J]. Plasma Science and Technology, 2018, 20(9): 95501-095501. DOI: 10.1088/2058-6272/aac203
    [3]Pedro AFFONSO NOBREGA, Alain GAUNAND, Vandad ROHANI, François CAUNEAU, Laurent FULCHERI. Applying chemical engineering concepts to non-thermal plasma reactors[J]. Plasma Science and Technology, 2018, 20(6): 65512-065512. DOI: 10.1088/2058-6272/aab301
    [4]Bozena ŠERÁ, Michal ŠERÝ. Non-thermal plasma treatment as a new biotechnology in relation to seeds, dry fruits, and grains[J]. Plasma Science and Technology, 2018, 20(4): 44012-044012. DOI: 10.1088/2058-6272/aaacc6
    [5]Abhishek GUPTA, Suhas S JOSHI. Modelling effect of magnetic field on material removal in dry electrical discharge machining[J]. Plasma Science and Technology, 2017, 19(2): 25505-025505. DOI: 10.1088/2058-6272/19/2/025505
    [6]XU Yan (徐艳), ZHANG Xiaoqing (张晓晴), YANG Chunhui (杨春辉), ZHANG Yanping (张燕平), YIN Yongxiang (印永祥). Recent Development of CO2 Reforming of CH4 by “Arc” Plasma[J]. Plasma Science and Technology, 2016, 18(10): 1012-1019. DOI: 10.1088/1009-0630/18/10/08
    [7]WANG Jingting (王婧婷), CAO Xu (曹栩), ZHANG Renxi (张仁熙), GONG Ting (龚挺), HOU Huiqi (侯惠奇), CHEN Shanping (陈善平), ZHANG Ruina (张瑞娜). Effect of Water Vapor on Toluene Removal in Catalysis-DBD Plasma Reactors[J]. Plasma Science and Technology, 2016, 18(4): 370-375. DOI: 10.1088/1009-0630/18/4/07
    [8]ZHENG Yanbin (郑艳彬), LI Guang (李光), WANG Wenlong (王文龙), LI Xiuchang (李秀昌), JIANG Zhigang(姜志刚). Dry Etching Characteristics of Amorphous Indium-Gallium-Zinc-Oxide Thin Films[J]. Plasma Science and Technology, 2012, 14(10): 915-918. DOI: 10.1088/1009-0630/14/10/11
    [9]SUN Yanpeng (孙艳朋), NIE Yong (聂勇), WU Angshan (吴昂山), JI Dengxiang(姬登祥), YU Fengwen (于凤文), JI Jianbing (计建炳. Carbon Dioxide Reforming of Methane to Syngas by Thermal Plasma[J]. Plasma Science and Technology, 2012, 14(3): 252-256. DOI: 10.1088/1009-0630/14/3/12
    [10]JIANG Nan(姜楠), LU Na (鲁娜), LI Jie(李杰), WU Yan(吴彦). Degradation of Benzene by Using a Silent-Packed Bed Hybrid Discharge Plasma Rreactor[J]. Plasma Science and Technology, 2012, 14(2): 140-146. DOI: 10.1088/1009-0630/14/2/11

Catalog

    Article views (146) PDF downloads (375) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return