Study of the influence of discharge loop parameters on anode side on generation characteristics of metal plasma jet in a pulsed vacuum discharge
-
Graphical Abstract
-
Abstract
In a pulsed vacuum discharge, the ejection performance of a metal plasma jet can be effectively improved by preventing charged particles from moving to the anode. In this paper, the effects of resistance and capacitance on the anode side on the discharge characteristics and the generation characteristics of plasma jet are investigated. Results show that the existence of a resistor on the anode side can increase the anode potential, thereby preventing charged particles from entering the anode and promoting the ejection of charged particles along the axis of the insulating sleeve nozzle. The application of a capacitor on the anode side can not only absorb electrons at the initial stage of discharge, increasing the peak value of the cathode hump potential, but also prevent charged particles from moving to the anode, thereby improving the ejection performance of the plasma jet. In addition, the use of a larger resistance and a smaller capacitance can improve the blocking effect on charged particles and further improve the ejection performance of the plasma jet. Results of this study will provide a reference for the improvement of the ejection performance of plasma jets and their applications.
-
-