Advanced Search+
Junru WANG (王俊儒), Yaowei YU (余耀伟), Houyin WANG (王厚银), Bin CAO (曹斌), Jiansheng HU (胡建生), Wei XU (徐伟). Study of the tungsten sputtering source suppression by wall conditionings in the EAST tokamak[J]. Plasma Science and Technology, 2021, 23(5): 55101-055101. DOI: 10.1088/2058-6272/abec63
Citation: Junru WANG (王俊儒), Yaowei YU (余耀伟), Houyin WANG (王厚银), Bin CAO (曹斌), Jiansheng HU (胡建生), Wei XU (徐伟). Study of the tungsten sputtering source suppression by wall conditionings in the EAST tokamak[J]. Plasma Science and Technology, 2021, 23(5): 55101-055101. DOI: 10.1088/2058-6272/abec63

Study of the tungsten sputtering source suppression by wall conditionings in the EAST tokamak

Funds: This work is supported by the National Key Research and Development Program of China (Nos. 2017YFE0301100 and 2017YFA0402500), National Natural Science Foundation of China (No. 11605237), and the Users with Excellence Program of Hefei Science Center CAS (2020HSC-UE010).
More Information
  • Received Date: November 16, 2020
  • Revised Date: March 03, 2021
  • Accepted Date: March 04, 2021
  • The steady fusion plasma operation is constrained by tungsten (W) material sputtering issue in the EAST tokamak. In this work, the suppression of W sputtering source has been studied by advanced wall conditionings. It is also concluded that the W sputtering yield becomes more with increasing carbon (C) content in the main deuterium (D) plasma. In EAST, the integrated use of discharge cleanings and lithium (Li) coating has positive effects on the suppression of W sputtering source. In the plasma recovery experiments, it is suggested that the W intensity is reduced by approximately 60% with the help of ~35 h Ion Cyclotron Radio Frequency Discharge Cleaning (ICRF-DC) and ~40 g Li coating after vacuum failure. The first wall covered by Li film could be relieved from the bombardment of energetic particles, and the impurity in the vessel would be removed through the particle induced desorption and isotope exchange during the discharge cleanings. In general, the sputtering yield of W would decrease from the source, on the bias of the improvement of wall condition and the mitigation of plasma-wall interaction process. It lays important base of the achievement of high-parameter and long-pulse plasma operation in EAST. The experiences also would be constructive for us to promote the understanding of relevant physics and basis towards the ITER-like condition.
  • [1]
    Philipps V 2011 J. Nucl. Mater. 415 S2
    [2]
    Pitts R A et al 2013 J. Nucl. Mater. 438 S48
    [3]
    Hirai T et al 2014 Phys. Scr. 2014 014006
    [4]
    Brezinsek S et al 2019 Nucl. Fusion 59 096035
    [5]
    Maier H et al 1999 J. Nucl. Mater. 266-269 1003
    [6]
    Rieth M et al 2013 J. Nucl. Mater. 432 482
    [7]
    Bucalossi J et al 2014 Fusion Eng. Des. 89 907
    [8]
    Bourdelle C et al 2015 Nucl. Fusion 55 063017
    [9]
    Hu J S et al 2019 Nucl. Mater. Energy 18 99
    [10]
    Wang L et al 2019 Nucl. Fusion 59 086036
    [11]
    Sang C F et al 2018 Phys. Plasmas 25 072511
    [12]
    Kreter A et al 2009 J. Nucl. Mater. 390–391 38–43
    [13]
    Li J et al 2011 J. Nucl. Mater. 415 S35
    [14]
    Shimada M and Pitts R A 2011 J. Nucl. Mater. 415 S1013
    [15]
    Douai D et al 2015 J. Nucl. Mater. 463 150
    [16]
    Bortolon A et al 2019 Nucl. Mater. Energy 19 384
    [17]
    Wan B N and Xu G S 2015 Chin. Sci. Bull. 60 2157
    [18]
    Zuo G Z et al 2013 J. Nucl. Mater. 438 S90
    [19]
    Hu J S et al 2009 Fusion Eng. Des. 84 2167
    [20]
    Xu Z et al 2016 Rev. Sci. Instrum. 87 11D429
    [21]
    Duan Y M et al 2012 Rev. Sci. Instrum. 83 093501
    [22]
    Zhang L et al 2015 Rev. Sci. Instrum. 86 123509
    [23]
    Van Rooij G J et al 2013 J. Nucl. Mater. 438 S42
    [24]
    Pospieszczyk A et al 2010 J. Phys. B: At. Mol. Opt. Phys. 43 144017
    [25]
    Atomic Data Analysis Structure—ADAS (http://adas.phys.strath.ac.uk)
    [26]
    Xu J C et al 2016 Rev. Sci. Instrum. 87 083504
    [27]
    Cao L et al 2015 J. Fusion Energy 34 1451
    [28]
    Yasunori Y and Tawara H 1996 At. Data Nucl. Data Tables 62 149
    [29]
    Ou J et al 2019 Chin. Phys. B 28 125201
    [30]
    Roth J et al 2004 Nucl. Fusion 44 L21
    [31]
    Bizyukov I et al 2006 J. Appl. Phys. 100 113302
    [32]
    Yu Y W et al 2011 Plasma Phys. Control. Fusion 53 015013
    [33]
    Wang J R et al 2021 Vacuum 183 109854
    [34]
    Yu Y W et al 2019 Nucl. Fusion 59 126036
    [35]
    Sun Z et al 2021 Nucl. Fusion 61 014002
    [36]
    Eckstein W 2002 Calculated sputtering, reflection and range values (http://hdl.handle.net/11858/00-001M-0000-0027-4522-5)
    [37]
    Eckstein W et al 1993 Sputtering data (http://hdl.handle.net/11858/00-001M-0000-0027-6324-6)
    [38]
    Zuo G Z et al 2020 Phys. Plasmas 27 052506
    [39]
    Xu W et al 2020 Plasma Phys. Control. Fusion 62
  • Related Articles

    [1]Bin CAO (曹斌), Jiangang LI (李建刚), Jianshen HU (胡建生), Houyin WANG (王厚银). The first results of deuterium retention on EAST with a full graphite wall via particle balance[J]. Plasma Science and Technology, 2017, 19(12): 125102. DOI: 10.1088/2058-6272/aa8a5f
    [2]CHEN Gen (陈根), QIN Chengming (秦成明), MAO Yuzhou (毛玉周), ZHAO Yanping (赵燕平), YUAN Shuai (袁帅), ZHANG Xinjun (张新军). Power Compensation for ICRF Heating in EAST[J]. Plasma Science and Technology, 2016, 18(8): 870-874. DOI: 10.1088/1009-0630/18/8/14
    [3]LI Changzheng(李长征), HU Jiansheng(胡建生), CHEN Yue(陈跃), LIANG Yunfeng(梁云峰), LI Jiangang(李建刚), LI Jiahong(李加宏), WU Jinhua(吴金华), HAN Xiang(韩翔). First Results of Pellet Injection Experiments on EAST[J]. Plasma Science and Technology, 2014, 16(10): 913-918. DOI: 10.1088/1009-0630/16/10/03
    [4]YAN Rong(鄢容), CHEN Junling(陈俊凌), CHEN Longwei(陈龙威), ZHU Dahuan(朱大焕). Deposition Mitigation of the First Mirrors Exposed in EAST with Metal and Carbon Mixed Wall Materials[J]. Plasma Science and Technology, 2014, 16(9): 885-889. DOI: 10.1088/1009-0630/16/9/14
    [5]WANG Fuqiong(王福琼), CHEN Yiping(陈一平), HU Liqun(胡立群). DIVIMP Modeling of Impurity Transport in EAST[J]. Plasma Science and Technology, 2014, 16(7): 642-649. DOI: 10.1088/1009-0630/16/7/03
    [6]JI Xiang (戢翔), SONG Yuntao (宋云涛), SHEN Guang (沈光), CAO Lei (曹磊), ZHOU Zibo (周自波), XU Tiejun (许铁军), LIU Xufeng (刘旭峰), XU Weiwei (徐薇薇), PENG Xuebing (彭学兵), WANG Shengming (王声铭), et al. Optimization and Update of EAST In-Vessel Components in 2011[J]. Plasma Science and Technology, 2013, 15(3): 277-281. DOI: 10.1088/1009-0630/15/3/17
    [7]M. B. CHOWDHURI, R. MANCHANDA, J. GHOSH, S. B. BHATT, Ajai KUMAR, B. K. DAS, K. A. JADEJA, P. A. RAIJADA, Manoj KUMAR, S. BANERJEE, Nilam RAMAIYA, Aniruddh MALI, Ketan M. PATEL, Vinay KUMAR, et al. Improvement of Plasma Performance with Lithium Wall Conditioning in Aditya Tokamak[J]. Plasma Science and Technology, 2013, 15(2): 123-128. DOI: 10.1088/1009-0630/15/2/09
    [8]FU Jia (符佳), LI Yingying (李颖颖), SHI Yuejiang (石跃江), WANG Fudi (王福地), ZHANG Wei (张伟), LV Bo (吕波), HUANG Juang (黄娟), WAN Baonian (万宝年), ZHOU Qian (周倩). Spectroscopic Measurements of Impurity Spectra on the EAST Tokamak[J]. Plasma Science and Technology, 2012, 14(12): 1048-1053. DOI: 10.1088/1009-0630/14/12/03
    [9]YANG Fei (杨飞), XIAO Bingjia (肖炳甲). Web-based Logbook System for EAST Experiments[J]. Plasma Science and Technology, 2010, 12(5): 632-635.
    [10]WANG Junyi (王君一), CHEN Yiping(陈一平). Study of Carbon Impurity Transport at SOL in EAST[J]. Plasma Science and Technology, 2010, 12(5): 535-539.
  • Cited by

    Periodical cited type(1)

    1. Wang, J., Yu, Y., Zuo, G. et al. High-parameters experimental linear plasma device for fusion wall conditioning studies. Vacuum, 2024. DOI:10.1016/j.vacuum.2024.113111

    Other cited types(0)

Catalog

    Article views (157) PDF downloads (283) Cited by(1)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return