Advanced Search+
Junru WANG (王俊儒), Yaowei YU (余耀伟), Houyin WANG (王厚银), Bin CAO (曹斌), Jiansheng HU (胡建生), Wei XU (徐伟). Study of the tungsten sputtering source suppression by wall conditionings in the EAST tokamak[J]. Plasma Science and Technology, 2021, 23(5): 55101-055101. DOI: 10.1088/2058-6272/abec63
Citation: Junru WANG (王俊儒), Yaowei YU (余耀伟), Houyin WANG (王厚银), Bin CAO (曹斌), Jiansheng HU (胡建生), Wei XU (徐伟). Study of the tungsten sputtering source suppression by wall conditionings in the EAST tokamak[J]. Plasma Science and Technology, 2021, 23(5): 55101-055101. DOI: 10.1088/2058-6272/abec63

Study of the tungsten sputtering source suppression by wall conditionings in the EAST tokamak

Funds: This work is supported by the National Key Research and Development Program of China (Nos. 2017YFE0301100 and 2017YFA0402500), National Natural Science Foundation of China (No. 11605237), and the Users with Excellence Program of Hefei Science Center CAS (2020HSC-UE010).
More Information
  • Received Date: November 16, 2020
  • Revised Date: March 03, 2021
  • Accepted Date: March 04, 2021
  • The steady fusion plasma operation is constrained by tungsten (W) material sputtering issue in the EAST tokamak. In this work, the suppression of W sputtering source has been studied by advanced wall conditionings. It is also concluded that the W sputtering yield becomes more with increasing carbon (C) content in the main deuterium (D) plasma. In EAST, the integrated use of discharge cleanings and lithium (Li) coating has positive effects on the suppression of W sputtering source. In the plasma recovery experiments, it is suggested that the W intensity is reduced by approximately 60% with the help of ~35 h Ion Cyclotron Radio Frequency Discharge Cleaning (ICRF-DC) and ~40 g Li coating after vacuum failure. The first wall covered by Li film could be relieved from the bombardment of energetic particles, and the impurity in the vessel would be removed through the particle induced desorption and isotope exchange during the discharge cleanings. In general, the sputtering yield of W would decrease from the source, on the bias of the improvement of wall condition and the mitigation of plasma-wall interaction process. It lays important base of the achievement of high-parameter and long-pulse plasma operation in EAST. The experiences also would be constructive for us to promote the understanding of relevant physics and basis towards the ITER-like condition.
  • [1]
    Philipps V 2011 J. Nucl. Mater. 415 S2
    [2]
    Pitts R A et al 2013 J. Nucl. Mater. 438 S48
    [3]
    Hirai T et al 2014 Phys. Scr. 2014 014006
    [4]
    Brezinsek S et al 2019 Nucl. Fusion 59 096035
    [5]
    Maier H et al 1999 J. Nucl. Mater. 266-269 1003
    [6]
    Rieth M et al 2013 J. Nucl. Mater. 432 482
    [7]
    Bucalossi J et al 2014 Fusion Eng. Des. 89 907
    [8]
    Bourdelle C et al 2015 Nucl. Fusion 55 063017
    [9]
    Hu J S et al 2019 Nucl. Mater. Energy 18 99
    [10]
    Wang L et al 2019 Nucl. Fusion 59 086036
    [11]
    Sang C F et al 2018 Phys. Plasmas 25 072511
    [12]
    Kreter A et al 2009 J. Nucl. Mater. 390–391 38–43
    [13]
    Li J et al 2011 J. Nucl. Mater. 415 S35
    [14]
    Shimada M and Pitts R A 2011 J. Nucl. Mater. 415 S1013
    [15]
    Douai D et al 2015 J. Nucl. Mater. 463 150
    [16]
    Bortolon A et al 2019 Nucl. Mater. Energy 19 384
    [17]
    Wan B N and Xu G S 2015 Chin. Sci. Bull. 60 2157
    [18]
    Zuo G Z et al 2013 J. Nucl. Mater. 438 S90
    [19]
    Hu J S et al 2009 Fusion Eng. Des. 84 2167
    [20]
    Xu Z et al 2016 Rev. Sci. Instrum. 87 11D429
    [21]
    Duan Y M et al 2012 Rev. Sci. Instrum. 83 093501
    [22]
    Zhang L et al 2015 Rev. Sci. Instrum. 86 123509
    [23]
    Van Rooij G J et al 2013 J. Nucl. Mater. 438 S42
    [24]
    Pospieszczyk A et al 2010 J. Phys. B: At. Mol. Opt. Phys. 43 144017
    [25]
    Atomic Data Analysis Structure—ADAS (http://adas.phys.strath.ac.uk)
    [26]
    Xu J C et al 2016 Rev. Sci. Instrum. 87 083504
    [27]
    Cao L et al 2015 J. Fusion Energy 34 1451
    [28]
    Yasunori Y and Tawara H 1996 At. Data Nucl. Data Tables 62 149
    [29]
    Ou J et al 2019 Chin. Phys. B 28 125201
    [30]
    Roth J et al 2004 Nucl. Fusion 44 L21
    [31]
    Bizyukov I et al 2006 J. Appl. Phys. 100 113302
    [32]
    Yu Y W et al 2011 Plasma Phys. Control. Fusion 53 015013
    [33]
    Wang J R et al 2021 Vacuum 183 109854
    [34]
    Yu Y W et al 2019 Nucl. Fusion 59 126036
    [35]
    Sun Z et al 2021 Nucl. Fusion 61 014002
    [36]
    Eckstein W 2002 Calculated sputtering, reflection and range values (http://hdl.handle.net/11858/00-001M-0000-0027-4522-5)
    [37]
    Eckstein W et al 1993 Sputtering data (http://hdl.handle.net/11858/00-001M-0000-0027-6324-6)
    [38]
    Zuo G Z et al 2020 Phys. Plasmas 27 052506
    [39]
    Xu W et al 2020 Plasma Phys. Control. Fusion 62
  • Related Articles

    [1]Jingyuan FU (付敬原), Pengfei LIU (刘鹏飞), Xishuo WEI (魏西硕), Zhihong LIN (林志宏), Nathaniel Mandrachia FERRARO, Raffi NAZIKIAN. Effects of resonant magnetic perturbations on radial electric fields in DIII-D tokamak[J]. Plasma Science and Technology, 2021, 23(10): 105104. DOI: 10.1088/2058-6272/ac190e
    [2]Haotian HUANG (黄浩天), Lu WANG (王璐). Effects of resonant magnetic perturbations on the loss of energetic ions in tokamak pedestal[J]. Plasma Science and Technology, 2020, 22(10): 105101. DOI: 10.1088/2058-6272/aba58c
    [3]Liang HAN (韩亮), Jun GAO (高俊), Tao CHEN (陈涛), Yuntian CONG (丛云天), Zongliang LI (李宗良). A method to measure the in situ magnetic field in a Hall thruster based on the Faraday rotation effect[J]. Plasma Science and Technology, 2019, 21(8): 85502-085502. DOI: 10.1088/2058-6272/ab0f63
    [4]Gerhard FRANZ, Ralf MEYER, Markus-Christian AMANN. Correlation of III/V semiconductor etch results with physical parameters of high-density reactive plasmas excited by electron cyclotron resonance[J]. Plasma Science and Technology, 2017, 19(12): 125503. DOI: 10.1088/2058-6272/aa89e0
    [5]Yizhou JIN (金逸舟), Juan YANG (杨涓), Jun SUN (孙俊), Xianchuang LIU (刘宪闯), Yizhi HUANG (黄益智). Experiment and analysis of the neutralization of the electron cyclotron resonance ion thruster[J]. Plasma Science and Technology, 2017, 19(10): 105502. DOI: 10.1088/2058-6272/aa76d9
    [6]Abhishek GUPTA, Suhas S JOSHI. Modelling effect of magnetic field on material removal in dry electrical discharge machining[J]. Plasma Science and Technology, 2017, 19(2): 25505-025505. DOI: 10.1088/2058-6272/19/2/025505
    [7]A. K. FEROUANI, M. LEMERINI, L. MERAD, M. HOUALEF. Numerical Modelling Point-to-Plane of Negative Corona Discharge in N2 Under Non-Uniform Electric Field[J]. Plasma Science and Technology, 2015, 17(6): 469-474. DOI: 10.1088/1009-0630/17/6/06
    [8]RAN Huijuan(冉慧娟), WANG Lei(王磊), WANG Jue(王珏), WANG Tao(王涛), YAN Ping(严萍). Discharge Characteristics of SF6 in a Non-Uniform Electric Field Under Repetitive Nanosecond Pulses[J]. Plasma Science and Technology, 2014, 16(5): 465-470. DOI: 10.1088/1009-0630/16/5/05
    [9]HUO Wenqing (霍文青), GUO Shijie (郭世杰), DING Liang (丁亮), XU Yuemin (徐跃民). Upper Hybrid Resonance of Microwaves with a Large Magnetized Plasma Sheet[J]. Plasma Science and Technology, 2013, 15(10): 979-984. DOI: 10.1088/1009-0630/15/10/04
    [10]Azusa FUKANO, Akiyoshi HATAYAMA. Electric Potential in Surface Produced Negative Ion Source with Magnetic Field Increasing Toward a Wall[J]. Plasma Science and Technology, 2013, 15(3): 266-270. DOI: 10.1088/1009-0630/15/3/15

Catalog

    Article views (157) PDF downloads (283) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return