Processing math: 100%
Advanced Search+
Wenjun YANG (杨文军), Guoqiang LI (李国强), Xueyu GONG (龚学余), Xiang GAO (高翔), Xiaoe LI (李小娥). Stability analysis of Alfvén eigenmodes in China Fusion Engineering Test Reactor fully non-inductive and hybrid mode scenarios[J]. Plasma Science and Technology, 2021, 23(4): 45103-045103. DOI: 10.1088/2058-6272/abecd7
Citation: Wenjun YANG (杨文军), Guoqiang LI (李国强), Xueyu GONG (龚学余), Xiang GAO (高翔), Xiaoe LI (李小娥). Stability analysis of Alfvén eigenmodes in China Fusion Engineering Test Reactor fully non-inductive and hybrid mode scenarios[J]. Plasma Science and Technology, 2021, 23(4): 45103-045103. DOI: 10.1088/2058-6272/abecd7

Stability analysis of Alfvén eigenmodes in China Fusion Engineering Test Reactor fully non-inductive and hybrid mode scenarios

Funds: This work was supported by National Natural Science Foundation of China (Nos. 11947056 and 12005100), the Natural Science Foundation of Hunan Province (No. 2020JJ5468), the Opening Project of Cooperative Innovation Center for Nuclear Fuel Cycle Technology and Equipment, University of South China (No. 2019KFY15), the Hunan Nuclear Fusion International Science and Technology Innovation Cooperation Base (No. 2018WK4009), and the Key Scientific Research Program of Education Department of Hunan Province (No. 20A417).
More Information
  • Received Date: November 30, 2020
  • Revised Date: March 04, 2021
  • Accepted Date: March 07, 2021
  • In this paper, NOVA/NOVA-K codes are used to investigate the stability of Alfvén eigenmodes (AEs) in the China Fusion Engineering Test Reactor (CFETR). Firstly, the stability of AEs excited by energetic alpha particles is investigated. For the fully non-inductive scenario, it is found that all AEs are stable, and the least stable toroidal mode number is n=8. However, for the hybrid mode scenario, it is found that many AEs are unstable, and the least stable toroidal mode numbers are n=7,8. Secondly, the effect of energetic alpha-particle parameters and beam ions on AE stability is also presented. The threshold of the least stable AE is about βcrit,α=1.12%, less than the value of alpha-particle beta (βα=1.34%). The result demonstrates that the AEs excited by alpha particles are weakly unstable. The effect of the beam ions on AE stability is found to be very weak in CFETR.
  • [1]
    Wan Y X et al 2017 Nucl. Fusion 57 102009
    [2]
    Wan B N et al 2014 IEEE Trans. Plasma Sci. 42 495
    [3]
    Neilson G H et al 2012 Nucl. Fusion 52 047001
    [4]
    Zohm H et al 2013 Nucl. Fusion 53 073019
    [5]
    Chan V S et al 2015 Nucl. Fusion 55 023017
    [6]
    Liu L et al 2018 Nucl. Fusion 58 096009
    [7]
    Shi N et al 2016 Fusion Eng. Des. 112 47
    [8]
    Yang W J et al 2017 Fusion Eng. Des. 114 118
    [9]
    Zonca F and Chen L 2000 Phys. Plasmas 7 4600
    [10]
    Chen L 1994 Phys. Plasmas 1 1519
    [11]
    Vlad G et al 2005 Nucl. Fusion 46 1
    [12]
    Fu G Y and Van Dam J W 1989 Phys. Fluids B: Plasma Phys.1 1949
    [13]
    Heidbrink W W et al 1991 Nucl. Fusion 31 1635
    [14]
    Breizman B N and Sharapov S E 2011 Plasma Phys. Control.Fusion 53 054001
    [15]
    White R B et al 1995 Phys. Plasmas 2 2871
    [16]
    Wong K L et al 1991 Phys. Rev. Lett. 66 1874
    [17]
    Fu G Y and Park W 1995 Phys. Rev. Lett. 74 1594
    [18]
    Ren Z Z et al 2020 Nucl. Fusion 60 016009
    [19]
    Chen W et al 2016 Nucl. Fusion 56 036018
    [20]
    Qiu Z et al 2018 Phys. Rev. Lett. 120 135001
    [21]
    Hu Y J et al 2016 Phys. Plasmas 23 022505
    [22]
    Gorelenkov N N, Berk H L and Budny R V 2005 Nucl. Fusion 45 226
    [23]
    Todo Y and Bierwage A 2014 Plasma Fusion Res. 9 3403068
    [24]
    Pinches S D et al 2015 Phys. Plasmas 22 021807
    [25]
    Gorelenkov N N and White R B 2013 Plasma Phys. Control. Fusion 55 015007
    [26]
    Waltz R E and Bass E M 2014 Nucl. Fusion 54 104006
    [27]
    Chen Y et al 2013 Phys. Plasmas 20 092511
    [28]
    Cheng C Z and Chance M S 1987 J. Comput. Phys. 71 124
    [29]
    Cheng C Z 1992 Phys. Rep. 211 1
    [30]
    Fu G Y et al 1996 Phys. Plasmas 3 4036
    [31]
    Testa D et al 2003 Nucl. Fusion 43 479
    [32]
    Van Zeeland M A et al 2012 Nucl. Fusion 52 094023
    [33]
    Zhuang G et al 2019 Nucl. Fusion 59 112010
    [34]
    Jian X et al 2017 Nucl. Fusion 57 046012
    [35]
    Chen J L et al 2017 Plasma Phys. Control. Fusion 59 075005
    [36]
    Estrada-Mila C, Candy J and Waltz R E 2006 Phys. Plasmas 13 112303
    [37]
    Pfeiffer W W et al 1980 General Atomics Report GA-A16178 (San Diego, CA: General Atomic Co)
    [38]
    Gorelenkov N N, Cheng C Z and Fu G Y 1999 Phys. Plasmas 6 2802
    [39]
    Berk H L, Breizman B N and Ye H C 1992 Phys. Lett. A 162 475
    [40]
    Tsai S T and Chen L 1993 Phys. Fluids B: Plasma Phys 5 3284
    [41]
    Zonca F and Chen L 1996 Phys. Plasmas 3 323
    [42]
    Berk H L et al 2001 Phys. Rev. Lett. 87 185002
    [43]
    Fu G Y and Cheng C Z 1992 Phys. Fluids B: Plasma Phys. 4 3722
  • Related Articles

    [1]Tao WANG, Shizhao WEI, Sergio BRIGUGLIO, Gregorio VLAD, Fulvio ZONCA, Zhiyong QIU. Nonlinear dynamics of the reversed shear Alfvén eigenmode in burning plasmas[J]. Plasma Science and Technology, 2024, 26(5): 053001. DOI: 10.1088/2058-6272/ad15e0
    [2]Haochen FAN, Guoqiang LI, Jinping QIAN, Xuexi ZHANG, Xiaohe WU, Yuqi CHU, Xiang ZHU, Hui LIAN, Haiqing LIU, Bo LYU, Yifei JIN, Qing ZANG, Jia HUANG. Kinetic equilibrium reconstruction with internal safety factor profile constraints on EAST tokamak[J]. Plasma Science and Technology, 2024, 26(4): 045102. DOI: 10.1088/2058-6272/ad0d48
    [3]Yichao LI, Jia FU, Yao HUANG, Jinping QIAN, Ang TI, Cheonho BAE, Shengyu FU, Jiankang LI, Yongqi GU, Zhengping LUO, Jinseok KO, Yongqing WEI, Dongmei LIU, Bingjia XIAO, Bo LYU, Xianzu GONG, Baonian WAN. Development of an upgraded motional Stark effect diagnostic system on EAST tokamak[J]. Plasma Science and Technology, 2023, 25(4): 045101. DOI: 10.1088/2058-6272/ac9b9e
    [4]Yan CHAO, Wei ZHANG, Liqun HU, Kangning GENG, Liqing XU, Tao ZHANG, Qing ZANG, Tianfu ZHOU. Observations of mode frequency increase and the appearance of ITB during the m/n = 1/1 kink mode in EAST high electron temperature long pulse operation[J]. Plasma Science and Technology, 2023, 25(2): 025107. DOI: 10.1088/2058-6272/ac92d0
    [5]Linghan WAN (万凌寒), Zhoujun YANG (杨州军), Ruobing ZHOU (周若冰), Xiaoming PAN (潘晓明), Chi ZHANG (张弛), Xianli XIE (谢先立), Bowen RUAN (阮博文). Design of Q-band FMCW reflectometry for electron density profile measurement on the Joint TEXT tokamak[J]. Plasma Science and Technology, 2017, 19(2): 25602-025602. DOI: 10.1088/2058-6272/19/2/025602
    [6]QU Hao (屈浩), ZHANG Tao (张涛), ZHANG Shoubiao (张寿彪), WEN Fei (文斐), WANG Yumin (王嵎民), KONG Defeng (孔德峰), HAN Xiang (韩翔), YANG Yao (杨曜), GAO Yu (高宇), HUANG Canbin (黄灿斌), CAI Jianqing (蔡剑青), GAO Xiang (高翔), the EAST team. Q-Band X-Mode Reflectometry and Density Profile Reconstruction[J]. Plasma Science and Technology, 2015, 17(12): 985-990. DOI: 10.1088/1009-0630/17/12/01
    [7]T. S. HAHM. Ion Heating from Nonlinear Landau Damping of High Mode Number Toroidal Alfvén Eigenmodes[J]. Plasma Science and Technology, 2015, 17(7): 534-538. DOI: 10.1088/1009-0630/17/7/02
    [8]ZHANG Shoubiao(张寿彪), GAO Xiang(高翔), LING Bili(凌必利), WANG Yumin(王嵎民), ZHANG Tao(张涛), HAN Xiang(韩翔), LIU Zixi(刘子奚), BU Jingliang(布景亮), LI Jiangang(李建刚), EAST team. Density Profile and Fluctuation Measurements by Microwave Reflectometry on EAST[J]. Plasma Science and Technology, 2014, 16(4): 311-315. DOI: 10.1088/1009-0630/16/4/02
    [9]ZHANG Chongyang (张重阳), LIU Ahdi (刘阿娣), LI Hong (李弘), LI Bin (李斌), et al.. X-Mode Frequency Modulated Density Profile Reflectometer on EAST Tokamak[J]. Plasma Science and Technology, 2013, 15(9): 857-862. DOI: 10.1088/1009-0630/15/9/04
    [10]XU Chao (许超), OU Yongsheng (欧勇盛), Eugenio SCHUSTER, and YU Xin(于欣). Computing Open-Loop Optimal Control of the q-Profile in Ramp-Up Tokamak Plasmas Using the Minimal-Surface Theory[J]. Plasma Science and Technology, 2013, 15(5): 403-410. DOI: 10.1088/1009-0630/15/5/02
  • Cited by

    Periodical cited type(10)

    1. Tao, J., Li, C., Cao, X. et al. Modeling of the Arc Characteristics inside a Thermal Laminar Plasma Torch with Different Gas Components. Processes, 2024, 12(6): 1207. DOI:10.3390/pr12061207
    2. Hu, Y.-H., Sun, S.-R., Meng, X. et al. Experimental study on the life and performance of an improved DC arc plasma torch. Journal of Physics D: Applied Physics, 2024, 57(20): 205206. DOI:10.1088/1361-6463/ad256b
    3. Cao, X., He, Y., Tao, J. et al. Influence of Novel Anode Structure on the Heat Flow Characteristics and Jet Stability of Pure Nitrogen Laminar Torch. Plasma Chemistry and Plasma Processing, 2024. DOI:10.1007/s11090-024-10526-z
    4. Cao, X., Zhang, J., Guo, W. et al. Effects of Gas Components on the Jet Characteristics of a DC Plasma Torch by Using Orthogonal Test Method. IEEE Transactions on Plasma Science, 2024, 52(5): 1685-1698. DOI:10.1109/TPS.2024.3393414
    5. Cao, X., Wang, L., He, R. et al. Characterization of Fe-Based Layers Deposited by Laminar Plasma Cladding on Low-Carbon Steel. Journal of Thermal Spray Technology, 2023, 32(7): 2104-2111. DOI:10.1007/s11666-023-01634-x
    6. Zhang, H.-Y., Deng, S.-J., Liu, S.-H. et al. Study of annular coaxial powder feeding effect on the characteristics of laminar plasma jet and atmospheric cluster deposition. Surface and Coatings Technology, 2023. DOI:10.1016/j.surfcoat.2023.129604
    7. Cao, X., Guo, W., Hu, G. et al. Design and Experimental Jet Characteristics of an Optimized DC Plasma Torch. IEEE Transactions on Plasma Science, 2022, 50(12): 4873-4881. DOI:10.1109/TPS.2022.3222690
    8. Zhang, H., Mauer, G., Liu, S. et al. Modeling of the Effect of Carrier Gas Injection on the Laminarity of the Plasma Jet Generated by a Cascaded Spray Gun. Coatings, 2022, 12(10): 1416. DOI:10.3390/coatings12101416
    9. Cao, X., He, R., Xu, H. et al. Experimental Study on the Design and Characteristics of an Optimized Thermal Plasma Torch with Two Gas Injections. Plasma Chemistry and Plasma Processing, 2021, 41(4): 1169-1181. DOI:10.1007/s11090-021-10178-3
    10. Cao, X., Li, C., He, R. et al. Study on the influences of the anode structures on the jet characteristics of a laminar plasma torch. Plasma Research Express, 2020, 2(1): 018001. DOI:10.1088/2516-1067/ab6c85

    Other cited types(0)

Catalog

    Article views (126) PDF downloads (231) Cited by(10)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return