Advanced Search+
Seul-Ki HAN, Se-Hwan PARK, Seong-Kyu AHN. Quantitative analysis of uranium in electro-recovery salt of pyroprocessing using laser-induced breakdown spectroscopy[J]. Plasma Science and Technology, 2021, 23(5): 55502-055502. DOI: 10.1088/2058-6272/abed2d
Citation: Seul-Ki HAN, Se-Hwan PARK, Seong-Kyu AHN. Quantitative analysis of uranium in electro-recovery salt of pyroprocessing using laser-induced breakdown spectroscopy[J]. Plasma Science and Technology, 2021, 23(5): 55502-055502. DOI: 10.1088/2058-6272/abed2d

Quantitative analysis of uranium in electro-recovery salt of pyroprocessing using laser-induced breakdown spectroscopy

Funds: This work was supported by a National Research Foundation of Korea (NRF) grant funded by the Korean Government's Ministry of Science and ICT (MSIT) (No. NRF-2017M2A8A5015084). This work also was partly supported by the Nuclear Safety Research Program through the Korea Foundation of Nuclear Safety (KoFONS) using the financial resource granted by the Nuclear Safety and Security Commission (NSSC) of the Republic of Korea (No. 1903014).
More Information
  • Received Date: September 24, 2020
  • Revised Date: March 04, 2021
  • Accepted Date: March 08, 2021
  • The amounts of nuclear materials in the LiCl-KCl salt in pyroprocessing have to be analyzed to prevent the diversion of the nuclear material. An alternative method to the chemical analysis has been pursued, and laser-induced breakdown spectroscopy (LIBS) is one candidate. In the present work, an in situ and quantitative analysis method of electro-recovery (ER) salt was proposed and demonstrated by using LIBS combined with dipstick sampling. Two types of simulated salt samples were prepared: ER salt sample and salt obtained from the dipstick sampling, and pulsed neodymium-doped yttrium aluminum garnet (Nd:YAG) laser with a wavelength of 532 nm was focused on the salt to generate plasma. The plasma emission was measured by using an Echelle spectrometer with a resolution of 0.01 nm in conjunction with an Intensified Charge-Coupled Detector camera. The U and other rare earth peaks in the spectra were identified. The best Limit of Detection and Root Mean Square Error of Calibration of U were 38 ppm and 0.0203 wt%, respectively. Our work shows that the U in the pyroprocessing ER salt can be monitored with LIBS.
  • [1]
    Goff K M et al 2011 Nucl. Eng. Technol. 43 335
    [2]
    Lee H 2013 Sci. Technol. Nucl. Install. 2013 343492
    [3]
    Rappleye D et al 2015 Ann. Nucl. Energy 77 265
    [4]
    Zhou W et al 2018 Ann. Nucl. Energy 112 603
    [5]
    Phongikaroon S and Simpson M F 2006 AIChE J. 52 1736
    [6]
    Williams A and Phongikaroon S 2017 Appl. Spectrosc. 71 744
    [7]
    Cremers D A and Radziemski L J 2013 Handbook of LaserInduced Breakdown Spectroscopy 2PndP (New York:Wiley)
    [8]
    Misiolek A W and Schechter P V 2006 Laser Induced Breakdown Spectroscopy (LIBS): Fundamentals and Applications (Cambridge: Cambridge University Press)
    [9]
    Cremers D A et al 1995 Appl. Spectrosc. 49 857
    [10]
    Davies C M et al 1995 Spectrochim. Acta B: At. Spectrosc.50 1059
    [11]
    Whitehouse A I 2006 Spectrosc. Eur. 18 14
    [12]
    Weisberg A et al 2014 Appl. Spectrosc. 68 937
    [13]
    Williams A and Phongikaroon S 2018 Appl. Spectrosc.72 1029
    [14]
    Han S K et al 2020 Plasma Sci. Technol. 22 074015
    [15]
    https://nist.gov/pml/atomic-spectra-database
    [16]
    https://cfa.havard.edu/amp/ampdata/kurucz23/sekur.html
    [17]
    Zorov N B et al 2010 Spectrochimi. Acta B 65 642
    [18]
    Esbensen K H 2001 Multivariate Data Analysis—in Practice 5PthP (Oslo: CAMO)
  • Cited by

    Periodical cited type(7)

    1. Lee, Y., Foster, R.I., Kim, H. et al. Data Fusion of Acoustic and Optical Emission from Laser-Induced Plasma for In Situ Measurement of Rare Earth Elements in Molten LiCl-KCl. Analytical Chemistry, 2024, 96(28): 11255-11262. DOI:10.1021/acs.analchem.4c00897
    2. Kang, X., Zhu, H., Zuo, C. et al. Research progress on application of laser-induced breakdown spectroscopy in spent fuel reprocessing | [激光诱导击穿光谱在乏燃料后处理中的应用研究进展]. Yejin Fenxi/Metallurgical Analysis, 2024, 44(5): 38-46. DOI:10.13228/j.boyuan.issn1000-7571.012392
    3. Guo, X., Wu, J., Shi, M. et al. Quantitative Measurement of Uranium in Ore Using Fiber‑Optic Laser‑Induced Breakdown Spectroscopy and Multivariate Calibration | [基 于 多 元 定 标 法 的 矿 物 铀 元 素 光 纤 式 激 光 诱 导 击 穿光 谱 定 量 分 析]. Zhongguo Jiguang/Chinese Journal of Lasers, 2024, 51(8): 0811001. DOI:10.3788/CJL230993
    4. Liu, X., Ren, S., Zhang, M. et al. Comparison of nanosecond and femtosecond laser-induced breakdown spectroscopy for determination of U and Th in tantalum-niobium ores. Journal of Analytical Atomic Spectrometry, 2024. DOI:10.1039/d4ja00268g
    5. Liu, X.-L., Wang, L., Peng, L.-L. et al. Quantitative analysis of thorium in graphite using femtosecond laser-induced breakdown spectroscopy | [飞秒激光诱导击穿光谱技术对石墨中钍的定量分析]. Chinese Optics, 2023, 16(1): 103-112. DOI:10.37188/CO.2022-0082
    6. Zou, Q., Li, C., Ding, Z. et al. Effect of matrix temperature on the LIBS signal of Au. Journal of Analytical Atomic Spectrometry, 2022, 38(2): 429-436. DOI:10.1039/d2ja00353h
    7. Ji, J., Song, W., Hou, Z. et al. Raw signal improvement using beam shaping plasma modulation for uranium detection in ore using laser-induced breakdown spectroscopy. Analytica Chimica Acta, 2022. DOI:10.1016/j.aca.2022.340551

    Other cited types(0)

Catalog

    Article views (103) PDF downloads (166) Cited by(7)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return