Citation: | Seul-Ki HAN, Se-Hwan PARK, Seong-Kyu AHN. Quantitative analysis of uranium in electro-recovery salt of pyroprocessing using laser-induced breakdown spectroscopy[J]. Plasma Science and Technology, 2021, 23(5): 55502-055502. DOI: 10.1088/2058-6272/abed2d |
[1] |
Goff K M et al 2011 Nucl. Eng. Technol. 43 335
|
[2] |
Lee H 2013 Sci. Technol. Nucl. Install. 2013 343492
|
[3] |
Rappleye D et al 2015 Ann. Nucl. Energy 77 265
|
[4] |
Zhou W et al 2018 Ann. Nucl. Energy 112 603
|
[5] |
Phongikaroon S and Simpson M F 2006 AIChE J. 52 1736
|
[6] |
Williams A and Phongikaroon S 2017 Appl. Spectrosc. 71 744
|
[7] |
Cremers D A and Radziemski L J 2013 Handbook of LaserInduced Breakdown Spectroscopy 2PndP (New York:Wiley)
|
[8] |
Misiolek A W and Schechter P V 2006 Laser Induced Breakdown Spectroscopy (LIBS): Fundamentals and Applications (Cambridge: Cambridge University Press)
|
[9] |
Cremers D A et al 1995 Appl. Spectrosc. 49 857
|
[10] |
Davies C M et al 1995 Spectrochim. Acta B: At. Spectrosc.50 1059
|
[11] |
Whitehouse A I 2006 Spectrosc. Eur. 18 14
|
[12] |
Weisberg A et al 2014 Appl. Spectrosc. 68 937
|
[13] |
Williams A and Phongikaroon S 2018 Appl. Spectrosc.72 1029
|
[14] |
Han S K et al 2020 Plasma Sci. Technol. 22 074015
|
[15] |
https://nist.gov/pml/atomic-spectra-database
|
[16] |
https://cfa.havard.edu/amp/ampdata/kurucz23/sekur.html
|
[17] |
Zorov N B et al 2010 Spectrochimi. Acta B 65 642
|
[18] |
Esbensen K H 2001 Multivariate Data Analysis—in Practice 5PthP (Oslo: CAMO)
|
1. | Lee, Y., Foster, R.I., Kim, H. et al. Data Fusion of Acoustic and Optical Emission from Laser-Induced Plasma for In Situ Measurement of Rare Earth Elements in Molten LiCl-KCl. Analytical Chemistry, 2024, 96(28): 11255-11262. DOI:10.1021/acs.analchem.4c00897 | |
2. | Kang, X., Zhu, H., Zuo, C. et al. Research progress on application of laser-induced breakdown spectroscopy in spent fuel reprocessing | [激光诱导击穿光谱在乏燃料后处理中的应用研究进展]. Yejin Fenxi/Metallurgical Analysis, 2024, 44(5): 38-46. DOI:10.13228/j.boyuan.issn1000-7571.012392 | |
3. | Guo, X., Wu, J., Shi, M. et al. Quantitative Measurement of Uranium in Ore Using Fiber‑Optic Laser‑Induced Breakdown Spectroscopy and Multivariate Calibration | [基 于 多 元 定 标 法 的 矿 物 铀 元 素 光 纤 式 激 光 诱 导 击 穿光 谱 定 量 分 析]. Zhongguo Jiguang/Chinese Journal of Lasers, 2024, 51(8): 0811001. DOI:10.3788/CJL230993 | |
4. | Liu, X., Ren, S., Zhang, M. et al. Comparison of nanosecond and femtosecond laser-induced breakdown spectroscopy for determination of U and Th in tantalum-niobium ores. Journal of Analytical Atomic Spectrometry, 2024. DOI:10.1039/d4ja00268g | |
5. | Liu, X.-L., Wang, L., Peng, L.-L. et al. Quantitative analysis of thorium in graphite using femtosecond laser-induced breakdown spectroscopy | [飞秒激光诱导击穿光谱技术对石墨中钍的定量分析]. Chinese Optics, 2023, 16(1): 103-112. DOI:10.37188/CO.2022-0082 | |
6. | Zou, Q., Li, C., Ding, Z. et al. Effect of matrix temperature on the LIBS signal of Au. Journal of Analytical Atomic Spectrometry, 2022, 38(2): 429-436. DOI:10.1039/d2ja00353h | |
7. | Ji, J., Song, W., Hou, Z. et al. Raw signal improvement using beam shaping plasma modulation for uranium detection in ore using laser-induced breakdown spectroscopy. Analytica Chimica Acta, 2022. DOI:10.1016/j.aca.2022.340551 |