Advanced Search+
Xiaobo ZHANG (张小波), Xin QIAO (乔鑫), Aixia ZHANG (张爱霞), Jukui XUE (薛具奎). Programmable electron density patterns induced by the interaction of an array laser and underdense plasma[J]. Plasma Science and Technology, 2021, 23(5): 55001-055001. DOI: 10.1088/2058-6272/abed2f
Citation: Xiaobo ZHANG (张小波), Xin QIAO (乔鑫), Aixia ZHANG (张爱霞), Jukui XUE (薛具奎). Programmable electron density patterns induced by the interaction of an array laser and underdense plasma[J]. Plasma Science and Technology, 2021, 23(5): 55001-055001. DOI: 10.1088/2058-6272/abed2f

Programmable electron density patterns induced by the interaction of an array laser and underdense plasma

Funds: This work is supported by National Natural Science Foundation of China (Nos. 11865014, 11765017, 11764039, 11475027, 11274255, and 11305132), the Natural Science Foundation of Gansu Province (No. 17JR5RA076), and by the Scientific Research Project of Gansu Higher Education (No. 2016A-005).
More Information
  • Received Date: October 11, 2020
  • Revised Date: March 06, 2021
  • Accepted Date: March 08, 2021
  • The spatially modulated electron distribution of plasma is the basis for obtaining programmable electron density patterns. It has an important influence on plasma technology applications. We propose an efficient scheme to realize controllable electron density patterns in underdense plasma based on the array laser–plasma interaction. Theoretical evidence for the realization of programmable electron density patterns and the corresponding electrostatic field is provided analytically, which is confirmed by particle-in-cell simulations. Results show that the spatial distribution of electron density in the propagation and transverse directions of the laser can be highly modulated to obtain rich programmable electron density patterns by adjusting the array pattern code and pulse width of the array laser beam.
  • [1]
    Kaw P, Schmidt G and Wilcox T 1973 Phys. Fluids 16 1522
    [2]
    Sodha M S, Ghatak A K and Tripathi V K 1976 Prog. Opt 13 169
    [3]
    Luo J et al 2018 Phys. Rev. Lett. 120 154801
    [4]
    Xia X P 2014 Laser Part Beams 32 591
    [5]
    Shokri B and Niknam A R 2006 Phys. Plasmas 13 113110
    [6]
    Gordon J P 1973 Phys. Rev. A 18 14
    [7]
    Manouchehrizadeh M and Dorranian D 2013 J. Theor. Appl.Phys.J. Theor. Appl. Phys. 7 43
    [8]
    Antonsen T M Jr, Palastro J and Milchberg H M 2007 Phys.Plasmas 14 033107
    [9]
    Naseri N, Bochkarev S G and Rozmus W 2010 Phys. Plasmas 17 033107
    [10]
    Max C E, Arons J and Langdon A B 1974 Phys. Rev. Lett.33 209
    [11]
    Niknam A R, Hashemzadeh M and Shokri B 2009 Phys.Plasmas 16 033105
    [12]
    Zhao Q et al 2018 New J. Phys. 20 063031
    [13]
    Liu M et al 2018 Phys. Plasmas 25 063103
    [14]
    Morales G J and Lee Y C 1977 Phys. Fluids 20 1135
    [15]
    Shukla P K, Eliasson B and Sandberg I 2003 Phys. Rev. Lett.91 075005
    [16]
    Snyder J et al 2019 Phys. Plasmas 26 033110
    [17]
    Ji L L, Snyder J and Shen B F 2019 Plasma Phys. Control.Fusion 61 065019
    [18]
    Ji L L et al 2016 Sci. Rep. 6 23256
    [19]
    Yi L Q et al 2016 Phys. Rev. Lett. 116 115001
    [20]
    Wang Y C et al 2020 Sci. Rep. 10 5861
    [21]
    Moreau A et al 2020 Plasma Phys. Control. Fusion 62 014013
    [22]
    Kulcsár G et al 2000 Phys. Rev. Lett. 84 5149
    [23]
    Sumeruk H A et al 2007 Phys. Rev. Lett. 98 045001
    [24]
    Gordon S P et al 1994 Opt. Lett. 19 484
    [25]
    Thakur V, Kant N and Vij S 2020 Phys. Scr. 95 045602
    [26]
    Yang X et al 2010 Appl. Phys. Lett. 97 071108
    [27]
    Ma H H et al 2020 Phys. Plasmas 27 073105
    [28]
    Yang X et al 2009 Opt. Lett. 34 3806
    [29]
    Zeng M et al 2015 Phys. Rev. Lett. 114 084801
    [30]
    Luo J et al 2016 Sci. Rep. 6 29101
    [31]
    Lehmann G and Spatschek K H 2016 Phys. Rev. Lett. 116 225002
    [32]
    Qiao B, He X T and Zhu S P 2005 Europhys. Lett. 72 955
    [33]
    Plaja L and Roso L 1997 Phys. Rev. E 56 7142
    [34]
    Wu H C, Sheng Z M, Zhang Q J, Cang Y and Zhang J 2005 Laser Part. Beams 23 417
    [35]
    Sheng Z M, Zhang J and Umstadter D 2003 Appl. Phys. B:Lasers Opt. 77 673
    [36]
    Ditmire T et al 1997 Phys. Rev. Lett. 78 3121
    [37]
    Bakhtiari F et al 2016 Phys. Plasmas 23 123105
    [38]
    https://www.txcorp.com/vsim is the Particle-In-Cell software y Tx-Corp
    [39]
    Hornby A M et al 1993 Appl. Phys. Lett. 63 2591
    [40]
    Willingale L et al 2006 Phys. Rev. Lett. 96 245002
    [41]
    Deng D M et al 2003 J. Opt. A: Pure Appl. Opt. 5 489
    [42]
    Chu S C et al 2012 Opt. Express 20 7128
    [43]
    Zeng X Y et al 2018 Opt. Lett. 43 1690
    [44]
    Cheung E C et al 2008 Opt. Lett. 33 354
    [45]
    Lee M P and Hanson R K 1986 J. Quant. Spectrosc. Radiat.Transf. 36 425
    [46]
    Cheng L H, Xue J K and Liu J 2016 Phys. Plasmas 23 053102
  • Related Articles

    [1]Lixue WANG, Jixing CAI. Study on the effect of focal position change on the expansion velocity and propagation mechanism of plasma generated by millisecond pulsed laser-induced fused silica[J]. Plasma Science and Technology, 2023, 25(3): 035507. DOI: 10.1088/2058-6272/ac9892
    [2]Yakun LIU (刘亚坤), Zhengcai FU (傅正财), Quanzhen LIU (刘全桢), Baoquan LIU (刘宝全), Anirban GUHA. Experimental and analytical investigation on metal damage suffered from simulated lightning currents[J]. Plasma Science and Technology, 2017, 19(12): 125301. DOI: 10.1088/2058-6272/aa8aca
    [3]QI Xiaohua (齐晓华), YANG Liang (杨亮), YAN Huijie (闫慧杰), JIN Ying (金英), HUA Yue (滑跃), REN Chunsheng (任春生). Experimental Study on Surface Dielectric Barrier Discharge Plasma Actuator with Different Encapsulated Electrode Widths for Airflow Control at Atmospheric Pressure[J]. Plasma Science and Technology, 2016, 18(10): 1005-1011. DOI: 10.1088/1009-0630/18/10/07
    [4]LIU Meng (刘猛), HE Tie (何铁), YAN Jie (言杰), KE Jianlin (柯建林), LIN Jufang (林菊芳), LU Biao (卢彪). Damage Characteristics of TiD2 Films Irradiated by a Mixed Pulsed Beam of Titanium and Hydrogen Ions[J]. Plasma Science and Technology, 2016, 18(7): 764-767. DOI: 10.1088/1009-0630/18/7/11
    [5]TANG Enling (唐恩凌), WU Jin (吴尽), WANG Meng (王猛), ZHANG Lijiao (张立佼), XIANG Shenghai (相升海), XIA Jin (夏瑾), LIU Shuhua (刘淑华), HE Liping (贺丽萍), HAN Yafei (韩雅菲), XU Mingyang (徐名扬), ZHANG Shuang (张爽), YUAN Jianfei (袁健飞). Damage Characteristics of the Logical Chip Module Due to Plasma Created by Hypervelocity Impacts[J]. Plasma Science and Technology, 2016, 18(4): 412-416. DOI: 10.1088/1009-0630/18/4/14
    [6]LI Hailing(李海玲), WANG Qing(王庆), BA Dechun(巴德纯). Helium Plasma Damage of Low-k Carbon Doped Silica Film: the Effect of Si Dangling Bonds on the Dielectric Constant[J]. Plasma Science and Technology, 2014, 16(11): 1050-1053. DOI: 10.1088/1009-0630/16/11/09
    [7]NIU Guojian(牛国鉴), LI Xiaochun(李小椿), DING Rui(丁锐), XU Qian(徐倩), LUO Guangnan(罗广南). Molecular Dynamics Simulations of Deposition and Damage on Tungsten Plasma-Facing Materials by Tungsten Dust[J]. Plasma Science and Technology, 2014, 16(8): 805-808. DOI: 10.1088/1009-0630/16/8/13
    [8]Miyuki YAJIMA, Masato YAMAGIWA, Shin KAJITA, Noriyasu OHNO, Masayuki TOKITANI, Arimichi TAKAYAM, Seiki SAITO, Atsushi M. ITO, Hiroaki NAKAMURA, Naoaki YOSHIDA. Comparison of Damages on Tungsten Surface Exposed to Noble Gas Plasmas[J]. Plasma Science and Technology, 2013, 15(3): 282-286. DOI: 10.1088/1009-0630/15/3/18
    [9]CHEN Zhaoquan (陈兆权), LIU Minghai (刘明海), HU Yelin (胡业林), ZHENG Xiaoliang (郑晓亮), LI Ping (李平), XIA Guangqing (夏广庆). Character Diagnosis for Surface-Wave Plasmas Excited by Surface Plasmon Polaritons[J]. Plasma Science and Technology, 2012, 14(8): 754-758. DOI: 10.1088/1009-0630/14/8/13
    [10]LIU Xuelan (刘雪兰), XU An (许安), DAI Yin (戴银), YUAN Hang (袁航), YU Zengliang (余增亮). Surface Etching and DNA Damage Induced by Low-Energy Ion Irradiation in Yeast[J]. Plasma Science and Technology, 2011, 13(3): 381-384.
  • Cited by

    Periodical cited type(3)

    1. Zhang, B., Cai, J., Jin, L. et al. Research on the enhancement mechanism of subsonic gas flow field in cleaning the paint layer by combining laser-induced plasma shock. Journal of Physics D: Applied Physics, 2025, 58(17): 175206. DOI:10.1088/1361-6463/adc13d
    2. Liu, Y., Cai, J., Zhou, Y. et al. Tunable plasma and combustion wave dynamics in fused silica induced by combined millisecond-nanosecond laser pulses under airflow control. Physics of Fluids, 2025, 37(1): 011705. DOI:10.1063/5.0249948
    3. Akhtar, M.S., Alicherif, M., Wang, B. et al. Effect of rotating gliding discharges on the lean blow-off limit of biogas flames. Plasma Science and Technology, 2024, 26(10): 105505. DOI:10.1088/2058-6272/ad5ec2

    Other cited types(0)

Catalog

    Article views (202) PDF downloads (295) Cited by(3)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return