Advanced Search+
Shuai ZHANG (张帅), Yuan GAO (高远), Hao SUN (孙昊), Zhe FAN (范喆), Tao SHAO (邵涛). Charge transfer in plasma assisted dry reforming of methane using a nanosecond pulsed packed-bed reactor discharge[J]. Plasma Science and Technology, 2021, 23(6): 64007-064007. DOI: 10.1088/2058-6272/abed30
Citation: Shuai ZHANG (张帅), Yuan GAO (高远), Hao SUN (孙昊), Zhe FAN (范喆), Tao SHAO (邵涛). Charge transfer in plasma assisted dry reforming of methane using a nanosecond pulsed packed-bed reactor discharge[J]. Plasma Science and Technology, 2021, 23(6): 64007-064007. DOI: 10.1088/2058-6272/abed30

Charge transfer in plasma assisted dry reforming of methane using a nanosecond pulsed packed-bed reactor discharge

Funds: This work was supported by the National Science Fund for Distinguished Young Scholars (No. 51925703), National Natural Science Foundation of China (Nos. 51637010, 51707186 and 51807190).
More Information
  • Received Date: December 30, 2020
  • Revised Date: March 07, 2021
  • Accepted Date: March 08, 2021
  • This paper is aimed to investigate the effect of packing material on plasma characteristic from the viewpoint of charge transfer process. Both the charge accumulation and release processes in the dielectric barrier discharge reactor and packed-bed reactor were investigated by measuring voltage and current waveforms and taking ICCD images. The packing material was ZrO2 pellets and the reactors were driven by a parameterized nanosecond pulse source. The quantity of transferred charges in the dielectric barrier discharge reactor was enhanced when decreasing pulse rise time or increasing pulse width (within 150 ns), but reduced when the gas gap was packed with pellets. The quantity of accumulated charges in the primary discharge was larger than the quantity of released charges in the secondary discharges in the dielectric barrier discharge reactor, but they were almost equal in the packed-bed reactor. It indicates that the discharge behavior has been changed from the view of charge transfer process once the gas gap was packed with pellets, and the ICCD images confirmed it.
  • [1]
    Lavoie J M 2014 Front. Chem. 2 81
    [2]
    Tao X M et al 2011 Prog. Energ. Combust. Sci. 37 113
    [3]
    Tu X et al 2011 J. Phys. D: Appl. Phys. 44 274007
    [4]
    Wang L et al 2017 Angew. Chem. 56 13679
    [5]
    Hu J et al 2016 Plasma Sci. Technol. 18 254
    [6]
    Ray D, Chawdhury P and Subrahmanyam C 2020 ACS Omega 5 14040
    [7]
    Chung W C et al 2014 Energ Fuel 28 7621
    [8]
    Gao Y et al 2020 Chem. Eng. J. 127693
    [9]
    Xu W W et al 2019 Plasma Sci. Technol. 21 044004
    [10]
    Ray D et al 2021 J. CO2 Util. 44 101400
    [11]
    Ray D, Chawdhury P and Subrahmanyam C 2020 Environ.Res. 183 109286
    [12]
    Zhu S J et al 2019 Plasma Sci. Technol. 21 085504
    [13]
    Zhu B et al 2019 Plasma Sci. Technol. 21 115503
    [14]
    Chawdhury P et al 2021 Appl. Catal. B: Environ. 284 119735
    [15]
    Wang Y et al 2021 J. Hazard. Mater. 404 123965
    [16]
    Kim H H, Kim J H and Ogata A 2009 J. Phys. D: Appl. Phys.42 135210
    [17]
    Tu X, Gallon H J and Whitehead J C 2011 IEEE Trans.Plasma Sci. 39 2172
    [18]
    Mei D H et al 2014 Plasma Sources Sci. Technol. 24 015011
    [19]
    Xu S J et al 2018 Plasma Sources Sci. Technol. 27 075009
    [20]
    Van Laer K and Bogaerts A 2017 Plasma Process. Polym. 14 1600129
    [21]
    Van Laer K and Bogaerts A 2017 Plasma Sources Sci.Technol. 26 085007
    [22]
    Wang W Z et al 2018 Chem. Eng. J. 334 2467
    [23]
    Scapinello M, Martini L M and Tosi P 2014 Plasma Process.Polym. 11 624
    [24]
    Shao T et al 2018 High Volt. 3 14
    [25]
    Wang X L et al 2019 Appl. Energy 243 132
    [26]
    Xu Y F et al 2020 Plasma Sci. Technol. 22 055403
    [27]
    Huang B D et al 2020 Chem. Eng. J. 396 125185
    [28]
    Jiang N et al 2017 J. Phys. D: Appl. Phys. 50 155206
    [29]
    Shao T et al 2008 J. Phys. D: Appl. Phys. 41 215203
    [30]
    Mangolini L et al 2002 Appl. Phys. Lett. 80 1722
    [31]
    Yang D Z et al 2013 Appl. Phys. Lett. 102 194102
    [32]
    Zhang C et al 2017 J. Phys. D: Appl. Phys. 50 405203
    [33]
    Pipa A V et al 2012 Rev. Sci. Instrum. 83 075111
    [34]
    Wang Y B et al 2019 ACS Catal. 9 10780
  • Related Articles

    [1]Xin ZENG (曾鑫), Yafang ZHANG (章亚芳), Liangyin GUO (郭良银), Wenquan GU (古文泉), Ping YUAN (袁萍), Linsheng WEI (魏林生). Ozone generation enhanced by silica catalyst in packed-bed DBD reactor[J]. Plasma Science and Technology, 2021, 23(8): 85501-085501. DOI: 10.1088/2058-6272/ac0244
    [2]Yuchuan QIN (秦豫川), Shulou QIAN (钱树楼), Cheng WANG (王城), Weidong XIA (夏维东). Effects of nitrogen on ozone synthesis in packed-bed dielectric barrier discharge[J]. Plasma Science and Technology, 2018, 20(9): 95501-095501. DOI: 10.1088/2058-6272/aac203
    [3]Pedro AFFONSO NOBREGA, Alain GAUNAND, Vandad ROHANI, François CAUNEAU, Laurent FULCHERI. Applying chemical engineering concepts to non-thermal plasma reactors[J]. Plasma Science and Technology, 2018, 20(6): 65512-065512. DOI: 10.1088/2058-6272/aab301
    [4]Bozena ŠERÁ, Michal ŠERÝ. Non-thermal plasma treatment as a new biotechnology in relation to seeds, dry fruits, and grains[J]. Plasma Science and Technology, 2018, 20(4): 44012-044012. DOI: 10.1088/2058-6272/aaacc6
    [5]Abhishek GUPTA, Suhas S JOSHI. Modelling effect of magnetic field on material removal in dry electrical discharge machining[J]. Plasma Science and Technology, 2017, 19(2): 25505-025505. DOI: 10.1088/2058-6272/19/2/025505
    [6]XU Yan (徐艳), ZHANG Xiaoqing (张晓晴), YANG Chunhui (杨春辉), ZHANG Yanping (张燕平), YIN Yongxiang (印永祥). Recent Development of CO2 Reforming of CH4 by “Arc” Plasma[J]. Plasma Science and Technology, 2016, 18(10): 1012-1019. DOI: 10.1088/1009-0630/18/10/08
    [7]WANG Jingting (王婧婷), CAO Xu (曹栩), ZHANG Renxi (张仁熙), GONG Ting (龚挺), HOU Huiqi (侯惠奇), CHEN Shanping (陈善平), ZHANG Ruina (张瑞娜). Effect of Water Vapor on Toluene Removal in Catalysis-DBD Plasma Reactors[J]. Plasma Science and Technology, 2016, 18(4): 370-375. DOI: 10.1088/1009-0630/18/4/07
    [8]ZHENG Yanbin (郑艳彬), LI Guang (李光), WANG Wenlong (王文龙), LI Xiuchang (李秀昌), JIANG Zhigang(姜志刚). Dry Etching Characteristics of Amorphous Indium-Gallium-Zinc-Oxide Thin Films[J]. Plasma Science and Technology, 2012, 14(10): 915-918. DOI: 10.1088/1009-0630/14/10/11
    [9]SUN Yanpeng (孙艳朋), NIE Yong (聂勇), WU Angshan (吴昂山), JI Dengxiang(姬登祥), YU Fengwen (于凤文), JI Jianbing (计建炳. Carbon Dioxide Reforming of Methane to Syngas by Thermal Plasma[J]. Plasma Science and Technology, 2012, 14(3): 252-256. DOI: 10.1088/1009-0630/14/3/12
    [10]JIANG Nan(姜楠), LU Na (鲁娜), LI Jie(李杰), WU Yan(吴彦). Degradation of Benzene by Using a Silent-Packed Bed Hybrid Discharge Plasma Rreactor[J]. Plasma Science and Technology, 2012, 14(2): 140-146. DOI: 10.1088/1009-0630/14/2/11

Catalog

    Article views (123) PDF downloads (149) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return