Loading [MathJax]/jax/output/SVG/jax.js
Advanced Search+
Yanqin LI (李艳琴), Jing ZHAO (赵静), Decai BU (部德才), Xulei ZHANG (张旭磊), Teng PENG (彭腾), Lanbo DI (底兰波), Xiuling ZHANG (张秀玲). Plasma-assisted Co/Zr-metal organic framework catalysis of CO2 hydrogenation: influence of Co precursors[J]. Plasma Science and Technology, 2021, 23(5): 55503-055503. DOI: 10.1088/2058-6272/abeed9
Citation: Yanqin LI (李艳琴), Jing ZHAO (赵静), Decai BU (部德才), Xulei ZHANG (张旭磊), Teng PENG (彭腾), Lanbo DI (底兰波), Xiuling ZHANG (张秀玲). Plasma-assisted Co/Zr-metal organic framework catalysis of CO2 hydrogenation: influence of Co precursors[J]. Plasma Science and Technology, 2021, 23(5): 55503-055503. DOI: 10.1088/2058-6272/abeed9

Plasma-assisted Co/Zr-metal organic framework catalysis of CO2 hydrogenation: influence of Co precursors

Funds: This work is supported by National Natural Science Foundation of China (Nos. 21673026, 11605020), Innovative Training Program for College Student of Liaoning Province (No. S202011258068)
More Information
  • Received Date: December 06, 2020
  • Revised Date: March 12, 2021
  • Accepted Date: March 14, 2021
  • In this study, Co/Zr-metal organic framework (MOF) precursors were obtained by a room-temperature liquid-phase precipitation method and the equivalent-volume impregnation method, respectively, using a Zr-MOF as the support, and Co/Zr-MOF-M and Co/Zr-MOF-N catalysts were prepared after calcination in a hydrogen–argon mixture gases (VAr:VH2=9:1) at 350 °C for 2 h. The catalytic activities of the prepared samples for CO2 methanation under atmospheric-pressure cold plasma were studied. The results showed that Co/Zr-MOF-M had a good synergistic effect with cold plasma. At a discharge power of 13.0 W, VH2:VCO2=4:1 and a gas flow rate of 30 mlmin−1, the CO2 conversion was 58.9% and the CH4 selectivity reached 94.7%, which was higher than for Co/Zr-MOF-N under plasma (CO2 conversion 24.8%, CH4 selectivity 9.8%). X-ray diffraction, scanning electron microscopy, transmission electron microscopy, N2 adsorption and desorption (Brunauer–Emmett–Teller) and x-ray photoelectron spectroscopy analysis results showed that Co/Zr-MOF-M and Co/Zr-MOF-N retained a good Zr-MOF framework structure, and the Co oxide was uniformly dispersed on the surface of the Zr-MOF. Compared with Co/Zr-MOF-N, the Co/Zr-MOF-M catalyst has a larger specific surface area and higher Co2+/Cototal and Co/Zr ratios. Additionally, the Co oxide in Co/Zr-MOF-M is distributed on the surface of the Zr-MOF in the form of porous particles, which may be the main reason why the catalytic activity of Co/Zr-MOF-M is higher than that of Co/Zr-MOF-N.
  • [1]
    Kordulis C et al 2016 Appl. Catal. B 181 156
    [2]
    Ouyang B et al 2018 Mater. Today Nano 3 28
    [3]
    Yuan P et al 2016 J. Phys. Chem. Solids 88 8
    [4]
    Gómez-Aguirre L C et al 2016 J. Am. Chem. Soc. 138 1122
    [5]
    Hong J P et al 2010 J. Catal. 273 9
    [6]
    Lippi R et al 2017 J. Mater. Chem. A 5 12990
    [7]
    Wang J K, Deng Q H and Wang Y J 2019 Appl. Surf. Sci.465 665
    [8]
    Zhang Y, Huang J W and Ding Y 2016 Appl. Catal. B 198 447
    [9]
    Zheng F C et al 2016 Mater. Lett. 182 214
    [10]
    Otun K O, Liu X Y and Hildebrandt D 2020 J. Energy Chem.51 230
    [11]
    Wu Y F et al 2019 Mol. Catal. 475 110485
    [12]
    Chakraborty A et al 2016 Chem. Commun. 52 11378
    [13]
    Li P et al 2018 Chem. Commun. 54 10602
    [14]
    Guan Q Q et al 2017 Fuel 205 130
    [15]
    Sumer Z and Keskin S 2016 J. Nanomater. 2016 6482628
    [16]
    Wahiduzzaman et al 2017 Nanoscale Res. Lett. 12 6
    [17]
    Zhang W X et al 2018 AIChE J 64 3400
    [18]
    Chen Y Z et al 2017 J. Am. Chem. Soc. 139 2035
    [19]
    Zhang C et al 2017 New J. Chem. 41 1631
    [20]
    Xu W W et al 2019 Plasma Sci. Technol. 21 044004
    [21]
    Zhao Z W et al 2018 Catal. Sci. Technol. 8 3160
    [22]
    Xu W W et al 2019 Nanomaterials 9 1432
    [23]
    Song H J et al 2018 RSC Adv. 8 24805
    [24]
    Li W H et al 2019 Appl. Catal. B 254 531
    [25]
    Zhang L et al 2019 J. Solid State Chem. 276 87
  • Related Articles

    [1]Xiaonan ZHANG (张小楠), Xianxiu MEI (梅显秀), Shanshan LI (李山山). The irradiation variation of amorphous alloy FeSiB using for fusion devices induced by 2 MeV He ions[J]. Plasma Science and Technology, 2021, 23(2): 25601-025601. DOI: 10.1088/2058-6272/abd97a
    [2]Falun SONG (宋法伦), Fei LI (李飞), Mingdong ZHU (朱明冬), Langping WANG (王浪平), Beizhen ZHANG (张北镇), Haitao GONG (龚海涛), Yanqing GAN (甘延青), Xiao JIN (金晓). Development and experimental study of large size composite plasma immersion ion implantation device[J]. Plasma Science and Technology, 2018, 20(1): 14013-014013. DOI: 10.1088/2058-6272/aa88b0
    [3]Peifang YANG (杨培芳), Chao YE (叶超), Xiangying WANG (王响英), Jiamin GUO (郭佳敏), Su ZHANG (张苏). Control of growth and structure of Ag films by the driving frequency of magnetron sputtering[J]. Plasma Science and Technology, 2017, 19(8): 85504-085504. DOI: 10.1088/2058-6272/aa6619
    [4]Jiamin GUO (郭佳敏), Chao YE (叶超), Xiangying WANG (王响英), Peifang YANG (杨培芳), Su ZHANG (张苏). Growth and structural properties of silicon on Ag films prepared by 40.68 MHz veryhigh-frequency magnetron sputtering[J]. Plasma Science and Technology, 2017, 19(7): 75502-075502. DOI: 10.1088/2058-6272/aa6395
    [5]Yang LIU (刘洋), Kaihong FANG (方开洪), Huiyi LV (吕会议), Jiwei LIU (刘际伟), Boyu WANG (王博宇). Hydrogenation of zirconium film by implantation of hydrogen ions[J]. Plasma Science and Technology, 2017, 19(3): 35502-035502. DOI: 10.1088/2058-6272/19/3/035502
    [6]Hadar MANIS-LEVY, Tsachi LIVNEH, Ido ZUKERMAN, Moshe H. MINTZ, Avi RAVEH. Effect of Radio-Frequency and Low-Frequency Bias Voltage on the Formation of Amorphous Carbon Films Deposited by Plasma Enhanced Chemical Vapor Deposition[J]. Plasma Science and Technology, 2014, 16(10): 954-959. DOI: 10.1088/1009-0630/16/10/09
    [7]ZHAO Yong (赵勇), CHEN Xian (陈贤), FANG Liguang (方利广), YANG Lianfang (杨莲芳), et al.. Effects of Annealing on the Structural and Photoluminescent Properties of Ag-Doped ZnO Nanowires Prepared by Ion Implantation[J]. Plasma Science and Technology, 2013, 15(8): 817-820. DOI: 10.1088/1009-0630/15/8/19
    [8]GAO Huanzhong (高欢忠), HE Long (何龙), HE Zhijiang (何志江), LI Zebin (李泽斌), et al.. Work Function Enhancement of Indium Tin Oxide via Oxygen Plasma Immersion Ion Implantation[J]. Plasma Science and Technology, 2013, 15(8): 791-793. DOI: 10.1088/1009-0630/15/8/14
    [9]ZHANG Jianhua(张建华), WANG Naiyan(王乃彦), ZHANG Fengshou(张丰收). Analysis of Accumulating Ability of Heavy Metals in Lotus (Nelumbo nucifera) Improved by Ion Implantation[J]. Plasma Science and Technology, 2012, 14(5): 424-426. DOI: 10.1088/1009-0630/14/5/21
    [10]RU Lili (汝丽丽), HUANG Jianjun (黄建军), GAO Liang (高亮), QI Bing (齐冰). Influence of Microwave Power on the Properties of Hydrogenated Diamond-Like Carbon Films Prepared by ECR Plasma Enhanced DC Magnetron Sputtering[J]. Plasma Science and Technology, 2010, 12(5): 551-555.

Catalog

    Article views (142) PDF downloads (201) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return