Advanced Search+
Renze YU (俞仁泽), Zhaoyuan LIU (刘钊源), Jiao LIN (林娇), Xinyi HE (何心怡), Linsheng LIU (刘林生), Qing XIONG (熊青), Qiang CHEN (陈强), Kostya (Ken) OSTRIKOV (欧思聪). Colorimetric quantification of aqueous hydrogen peroxide in the DC plasma-liquid system[J]. Plasma Science and Technology, 2021, 23(5): 55504-055504. DOI: 10.1088/2058-6272/abf47f
Citation: Renze YU (俞仁泽), Zhaoyuan LIU (刘钊源), Jiao LIN (林娇), Xinyi HE (何心怡), Linsheng LIU (刘林生), Qing XIONG (熊青), Qiang CHEN (陈强), Kostya (Ken) OSTRIKOV (欧思聪). Colorimetric quantification of aqueous hydrogen peroxide in the DC plasma-liquid system[J]. Plasma Science and Technology, 2021, 23(5): 55504-055504. DOI: 10.1088/2058-6272/abf47f

Colorimetric quantification of aqueous hydrogen peroxide in the DC plasma-liquid system

Funds: Q Chen thanks National Natural Science Foundation of China (No. 52077185) and the Basic Research Program of Science and Technology of Shenzhen, China (No. JCYJ20190809162617137) for partial financial support. L Liu thanks for the financial supports from the Basic Ability Promotion Project for Young and Middle-Aged Teachers in Universities of Guangxi (No. 2018KY0083) and Doctoral Scientific Research Fund of Guangxi Normal University (No. 2017BQ019). Q Xiong thanks for the financial supports from National Natural Science Foundation of China (No. 11975061), the Technology Innovation and Application Development Project of Chongqing (No. cstc2019jscx-msxmX0041), the Construction Committee Project of Chongqing (No. 2018-1-3-6), and the Fundamental Research Funds for the Central Universities (No. 2019CDQYDQ034). K Ostrikov thanks the Australian Research Council (ARC) for partial support.
More Information
  • Received Date: January 28, 2021
  • Revised Date: March 29, 2021
  • Accepted Date: March 31, 2021
  • The quantification of hydrogen peroxide (H2O2) generated in the plasma-liquid interactions is of great importance, since the H2O2 species is vital for the applications of the plasma-liquid system. Herein, we report on in situ quantification of the aqueous H2O2 (H2O2aq) using a colorimetric method for the DC plasma-liquid systems with liquid as either a cathode or an anode. The results show that the H2O2aq yield is 8–12 times larger when the liquid acts as a cathode than when the liquid acts as an anode. The conversion rate of the gaseous OH radicals to H2O2aq is 4–6 times greater in the former case. However, the concentrations of dissolved OH radicals for both liquid as cathode and anode are of the same order of tens of nM.
  • [1]
    Cavendish H 1785 Phil. Trans. 75 372
    [2]
    Bruggeman P et al 2016 Plasma Sources Sci. Technol. 25 053002
    [3]
    Huang Y F et al 2016 IEEE Trans. Plasma Sci. 44 938
    [4]
    Liu Y N et al 2019 J. Chem. Technol. Biotechnol. 94 494
    [5]
    Jamróz P et al 2014 Plasma Chem. Plasma Process. 34 25
    [6]
    Locke B R et al 2006 Ind. Eng. Chem. Res. 45 882
    [7]
    Lukeš P 2001 Water treatment by pulsed streamer corona discharge PhD Thesis Institute of Plasma Physics AS CR
    [8]
    Liu Y N et al 2018 Chem. Eng. J. 345 679
    [9]
    Wu H X, Fang Z and Xu Y H 2015 Plasma Sci. Technol.17 228
    [10]
    He B B et al 2018 J. Electrochem. Soc. 165 E454
    [11]
    Chen B Y et al 2019 J. Hazard. Mater. 363 55
    [12]
    Foster J E 2017 Phys. Plasmas 24 055501
    [13]
    Wang R X et al 2014 Plasma Process. Polym. 11 448
    [14]
    Saito G and Akiyama T 2015 J. Nanomater. 16 299
    [15]
    Liu J D et al 2016 Sci. Rep. 6 38454
    [16]
    Kondeti V S S K et al 2017 J. Vac. Sci. Technol. A 35 061302
    [17]
    Gupta S K S 2017 Plasma Chem. Plasma Process. 37 897
    [18]
    Chen Q, Li J S and Li Y F 2015 J. Phys. D: Appl. Phys. 48 424005
    [19]
    Brettholle M et al 2010 Phys. Chem. Chem. Phys. 12 1750
    [20]
    Höfft O and Endres F 2011 Phys. Chem. Chem. Phys. 13 13472
    [21]
    Richmonds C and Sankaran R M 2008 Appl. Phys. Lett. 93 131501
    [22]
    Huang X Z et al 2013 Nanotechnology 24 095604
    [23]
    Baba K et al 2010 Chem. Commun. 46 255
    [24]
    Kaneko T et al 2009 Plasma Process. Polym. 6 713
    [25]
    Shirafuji T et al 2013 Jpn. J. Appl. Phys. 52 126202
    [26]
    Velusamy T et al 2017 Plasma Process. Polym. 14 1600224
    [27]
    Hatakeyama R 2017 Rev. Mod. Plasma Phys. 1 7
    [28]
    Gong X N et al 2018 J. Electrochem. Soc. 165 E540
    [29]
    Huang H et al 2020 Chem. Commun. 56 221
    [30]
    Fridman G et al 2008 Plasma Process. Polym. 5 503
    [31]
    Kong M G et al 2009 New J. Phys. 11 115012
    [32]
    Puač N et al 2018 Plasma Process. Polym. 15 1700174
    [33]
    Misra N N, Schlüter O and Cullen P J 2016 Cold Plasma in Food and Agriculture: Fundamentals and Applications (London: Academic)
    [34]
    Ichiki T, Koidesawa T and Horiike Y 2003 Plasma Sources Sci. Technol. 12 S16
    [35]
    Cserfalvi T and Mezei P 1994 J. Anal. At. Spectrom. 9 345
    [36]
    Cserfalvi T, Mezei P and Apai P 1993 J. Phys. D: Appl. Phys.26 2184
    [37]
    Kim H J et al 2000 Spectrochim. Acta B 55 823
    [38]
    Lawrence K E, Rice G W and Fassel V A 1984 Anal. Chem.56 289
    [39]
    Wilson C G and Gianchandani Y B 2002 IEEE Trans. Electron Devices 49 2317
    [40]
    Jenkins G and Manz A 2002 J. Micromech. Microeng. 12 N19
    [41]
    Marcus R K and Davis W C 2001 Anal. Chem. 73 2903
    [42]
    Davis W C and Marcus R K 2002 Spectrochim. Acta B 57 1473
    [43]
    Liu K et al 2021 J. Phys. D: Appl. Phys. 54 065201
    [44]
    Liu K et al 2020 Front. Phys. 8 242
    [45]
    Oehmigen K et al 2011 Plasma Process. Polym. 8 904
    [46]
    Machala Z et al 2019 J. Phys. D: Appl. Phys. 52 034002
    [47]
    Kučerová K, Machala Z and Hensel K 2020 Plasma Chem.Plasma Process. 40 749
    [48]
    Rumbach P, Bartels D M and Go D B 2018 Plasma Sources Sci. Technol. 27 115013
    [49]
    Bruggeman P, Cunge G and Sadeghi N 2012 Plasma Sources Sci. Technol. 21 035019
    [50]
    Xiong Q, Yang Z Q and Bruggeman P J 2015 J. Phys. D: Appl.Phys. 48 424008
    [51]
    Ono R and Oda T 2000 IEEE Trans. Ind. Appl. 36 82
    [52]
    Xiong Q et al 2012 Eur. Phys. J. D 66 281
    [53]
    Pei X K et al 2014 IEEE Trans. Plasma Sci. 42 1206
    [54]
    Kukui A et al 2008 J. Atmos. Chem. 61 133
    [55]
    Herrmann H 2007 Phys. Chem. Chem. Phys. 9 3935
    [56]
    Weil J A and Bolton J R 2007 Electron Paramagnetic Resonance: Elementary Theory and Practical Applications 2nd edn (New York: Wiley)
    [57]
    Atherton N M et al 1994 Electron Spin Resonance (Cambridge: Royal Society of Chemistry)
    [58]
    Stein G and Weiss J 1950 Nature 166 1104
    [59]
    Gorbanev Y et al 2016 Chem. Eur. J. 22 3496
    [60]
    He X Y et al 2018 Plasma Sources Sci. Technol. 27 085010
    [61]
    Chen Z Y et al 2018 J. Phys. D: Appl. Phys. 51 325201
    [62]
    He B B et al 2017 J. Phys. D: Appl. Phys. 50 445207
    [63]
    Arretche F et al 2020 Eur. Phys. J. D 74 1
    [64]
    Lin J et al 2020 Eur. Phys. J. D 74 160
    [65]
    Buxton G V et al 1988 J. Phys. Chem. Ref. Data 17 513
    [66]
    Kovačević V V et al 2017 J. Phys. D: Appl. Phys. 50 155205
    [67]
    Li L et al 2012 J. Phys. D: Appl. Phys. 45 125201
    [68]
    Kaneko T et al 2011 Plasma Sources Sci. Technol. 20 034014
    [69]
    Anderson C E et al 2016 Plasma Chem. Plasma Process 36 1393
    [70]
    Tian W and Kushner M J 2014 J. Phys. D: Appl. Phys. 47 165201
    [71]
    Verreycken T et al 2013 Plasma Sources Sci. Technol. 22 055014
    [72]
    Yue Y F et al 2016 IEEE Trans. Plasma Sci. 44 2754
    [73]
    Nikiforov A et al 2011 Appl. Phys. Express 4 026102
    [74]
    Chen Q et al 2019 J. Phys. D: Appl. Phys. 52 425205
  • Cited by

    Periodical cited type(5)

    1. Ling, Y., Dai, D., Chang, J. et al. Effect of liquid surface depression size on discharge characteristics and chemical distribution in the plasma-liquid anode system. Plasma Science and Technology, 2024, 26(9): 094000. DOI:10.1088/2058-6272/ad2b38
    2. Shutov, D.A., Smirnova, K.V., Ivanov, A.N. et al. The Chemical Composition of Species Formed in a Water Anode Under the Action of a Direct Current Electric Discharge: Comparison with Liquid Cathode—Experiment and Simulation. Plasma Chemistry and Plasma Processing, 2023, 43(3): 577-597. DOI:10.1007/s11090-023-10322-1
    3. Shutov, D.A., Batova, N.A., Smirnova, K.V. et al. Kinetics of processes initiated in a water cathode by the action of a direct current discharge at atmospheric pressure in air: simulation and experiment. Journal of Physics D: Applied Physics, 2022, 55(34): 345206. DOI:10.1088/1361-6463/ac74f8
    4. Wu, H., Liu, R., Sun, Y. et al. Effect of MoS2 on phenol decomposition in water after high-voltage pulse discharge treatment. Chemosphere, 2022. DOI:10.1016/j.chemosphere.2022.133808
    5. Liu, Z., Chen, Q., Liu, Q. et al. Visualization of gold nanoparticles formation in DC plasma-liquid systems. Plasma Science and Technology, 2021, 23(7): 075504. DOI:10.1088/2058-6272/ac0008

    Other cited types(0)

Catalog

    Article views (147) PDF downloads (164) Cited by(5)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return