Citation: | Zhen ZHOU (周振), Tao ZHANG (张涛), Mingfu WU (吴茗甫), Kaixuan YE (叶凯萱), Fubin ZHONG (钟富彬), Jia HUANG (黄佳), Kangning GENG (耿康宁), Yukai LIU (刘煜凯), Gongshun LI (李恭顺), Haoming XIANG (向皓明), Yumin WANG (王嵎民), Fei WEN (文斐), Sanqiu LIU (刘三秋). Experimental study of core and edge fluctuations by reflectometry on EAST tokamak[J]. Plasma Science and Technology, 2021, 23(7): 75101-075101. DOI: 10.1088/2058-6272/abf4b5 |
[1] |
Wesson J 2011 Tokamaks (Oxford: Oxford University Press)
|
[2] |
Horton W 1999 Rev. Mod. Phys. 71 735
|
[3] |
Doyle E J et al 2007 Nucl. Fusion 47 S18
|
[4] |
Wan Y X et al 2017 Nucl. Fusion 57 102009
|
[5] |
Nazikian R, Kramer G J and Valeo E 2001 Phys. Plasmas 8 1840
|
[6] |
Mazzucato E 1998 Rev. Sci. Instrum. 69 2201
|
[7] |
Vershkov V A et al 2011 Nucl. Fusion 51 094019
|
[8] |
Krämer-Flecken A et al 2010 Rev. Sci. Instrum. 81 113502
|
[9] |
Soldatov S, Krämer-Flecken A and Zorenko O 2011 Rev. Sci.Instrum. 82 033513
|
[10] |
Krämer-Flecken A et al 2004 Nucl. Fusion 44 1143
|
[11] |
Shinohara K et al 1999 Rev. Sci. Instrum. 70 4246
|
[12] |
Xiang H M et al 2018 Rev. Sci. Instrum. 89 10H103
|
[13] |
Xiang H M et al 2019 Nucl. Fusion 59 106037
|
[14] |
Lin Y et al 2001 Plasma Phys. Control. Fusion 43 L1
|
[15] |
Schmitz L et al 2009 Nucl. Fusion 49 095004
|
[16] |
Ernst D R et al 2016 Phys. Plasmas 23 056112
|
[17] |
Yan Z et al 2011 Phys. Rev. Lett. 107 055004
|
[18] |
Diallo A et al 2014 Phys. Rev. Lett. 112 115001
|
[19] |
Diallo A et al 2015 Phys. Plasmas 22 056111
|
[20] |
Laggner F M et al 2016 Plasma Phys. Control. Fusion 58 065005
|
[21] |
Zhong W L et al 2016 Plasma Phys. Control. Fusion 58 065001
|
[22] |
Gao X et al 2015 Nucl. Fusion 55 083015
|
[23] |
Zhang T et al 2017 Plasma Phys. Control. Fusion 59 065012
|
[24] |
Chen R et al 2018 Nucl. Fusion 58 112004
|
[25] |
Qu H et al 2015 Rev. Sci. Instrum. 86 083503
|
[26] |
Hu J Q et al 2017 Rev. Sci. Instrum. 88 073504
|
[27] |
Wang S X et al 2018 Nucl. Fusion 58 112013
|
[28] |
Vanovac B et al 2018 Nucl. Fusion 58 112011
|
[29] |
Diallo A et al 2018 Phys. Rev. Lett. 121 235001
|
[30] |
Tang T F et al 2018 Phys. Plasmas 25 122510
|
[1] | O L KRUTKIN, A B ALTUKHOV, A D GURCHENKO, E Z GUSAKOV, S HEURAUX, M A IRZAK, L A ESIPOV, T P KIVINIEMI, C LECHTE, S LEERINK, P NISKALA, G ZADVITSKIY. Investigation of nonlinear effects in Doppler reflectometry using full-wave synthetic diagnostics[J]. Plasma Science and Technology, 2020, 22(6): 64001-064001. DOI: 10.1088/2058-6272/ab5c28 |
[2] | Linghan WAN (万凌寒), Zhoujun YANG (杨州军), Ruobing ZHOU (周若冰), Xiaoming PAN (潘晓明), Chi ZHANG (张弛), Xianli XIE (谢先立), Bowen RUAN (阮博文). Design of Q-band FMCW reflectometry for electron density profile measurement on the Joint TEXT tokamak[J]. Plasma Science and Technology, 2017, 19(2): 25602-025602. DOI: 10.1088/2058-6272/19/2/025602 |
[3] | GAO Yu (高宇), WANG Yumin (王嵎民), ZHANG Tao (张涛), ZHANG Shoubiao (张寿彪), QU Hao (屈浩), HAN Xiang (韩翔), WEN Fei (文斐), KONG Defeng (孔德峰), HUANG Canbin (黄灿斌), CAI Jianqing (蔡剑青), SUN Youwen (孙有文), LIANG Yunfeng (梁云峰), GAO Xiang (高翔), EAST Team. Preliminary Study of the Magnetic Perturbation Effects on the Edge Density Profiles and Fluctuations Using Reflectometers on EAST[J]. Plasma Science and Technology, 2016, 18(9): 879-883. DOI: 10.1088/1009-0630/18/9/01 |
[4] | ZHU Yilun (朱逸伦), ZHAO Zhenling (赵朕领), TONG Li (仝丽), CHEN Dongxu (陈东旭), XIE Jinlin (谢锦林), LIU Wandong (刘万东). Optics System Design of Microwave Imaging Reflectometry for the EAST Tokamak[J]. Plasma Science and Technology, 2016, 18(4): 449-452. DOI: 10.1088/1009-0630/18/4/20 |
[5] | LIU Zhiwei (刘智惟), BAO Weimin (包为民), LI Xiaoping (李小平), LIU Donglin (刘东林), ZHOU Hui (周辉). Influence of Plasma Pressure Fluctuation on RF Wave Propagation[J]. Plasma Science and Technology, 2016, 18(2): 131-137. DOI: 10.1088/1009-0630/18/2/06 |
[6] | QU Hao (屈浩), ZHANG Tao (张涛), ZHANG Shoubiao (张寿彪), WEN Fei (文斐), WANG Yumin (王嵎民), KONG Defeng (孔德峰), HAN Xiang (韩翔), YANG Yao (杨曜), GAO Yu (高宇), HUANG Canbin (黄灿斌), CAI Jianqing (蔡剑青), GAO Xiang (高翔), the EAST team. Q-Band X-Mode Reflectometry and Density Profile Reconstruction[J]. Plasma Science and Technology, 2015, 17(12): 985-990. DOI: 10.1088/1009-0630/17/12/01 |
[7] | ZHANG Shoubiao(张寿彪), GAO Xiang(高翔), LING Bili(凌必利), WANG Yumin(王嵎民), ZHANG Tao(张涛), HAN Xiang(韩翔), LIU Zixi(刘子奚), BU Jingliang(布景亮), LI Jiangang(李建刚), EAST team. Density Profile and Fluctuation Measurements by Microwave Reflectometry on EAST[J]. Plasma Science and Technology, 2014, 16(4): 311-315. DOI: 10.1088/1009-0630/16/4/02 |
[8] | ZANG Linge (臧临阁), M. TAKEUCHI, N. NISHINO, T. MIZUUCHI, S. OHSHIMA, K. KASAJIMA, M. SHA, K. MUKAI, et al. Observation of Edge Plasma Fluctuations with a Fast Camera in Heliotron J[J]. Plasma Science and Technology, 2013, 15(3): 213-216. DOI: 10.1088/1009-0630/15/3/04 |
[9] | Y. PIANROJ, T. ONJUN. Simulations of H-Mode Plasmas in Tokamak Using a Complete Core-Edge Modeling in the BALDUR Code[J]. Plasma Science and Technology, 2012, 14(9): 778-788. DOI: 10.1088/1009-0630/14/9/02 |
[10] | DONG Chunfeng, Shigeru MORITA, Motoshi GOTO, Masahiro KOBAYASHI. Study on Radial Position of Impurity Ions in Core and Edge Plasma of LHD Using Space-Resolved EUV Spectrometer[J]. Plasma Science and Technology, 2011, 13(2): 140-144. |
1. | Zhao, Y., Liu, Y., Liu, Z. et al. A 3D-printed fence-surface plasma source for skin treatment and its potential for personalized medical application. Journal of Physics D: Applied Physics, 2024, 57(12): 125207. DOI:10.1088/1361-6463/ad172d |
2. | Xu, W., Lu, Y., Yue, X. et al. Influence of operating conditions on electron density in atmospheric pressure helium plasma jets. Journal of Physics D: Applied Physics, 2024, 57(4): 045201. DOI:10.1088/1361-6463/ad0479 |
3. | Apelqvist, J., Robson, A., Helmke, A. et al. AN EMERGING TECHNOLOGY FOR CLINICAL USE IN WOUND HEALING. Journal of Wound Management, 2024, 25(3): S1-S84. DOI:10.35279/jowm2024.25.03.sup01 |
4. | Liu, F., Shi, G., Wang, W. et al. Effects of the ground-electrode temperature on electrical and optical characteristics of a coaxial dielectric barrier discharge in atmospheric pressure air. Physica Scripta, 2023, 98(12): 125605. DOI:10.1088/1402-4896/ad0801 |
5. | Machmud, A., Chang, M.B. Review on applying plasma and catalysis for abating the emissions of fluorinated compounds. Journal of Environmental Chemical Engineering, 2023, 11(6): 111584. DOI:10.1016/j.jece.2023.111584 |
6. | Nguyen, D.B., Saud, S., Trinh, Q.T. et al. Generation of Multiple Jet Capillaries in Advanced Dielectric Barrier Discharge for Large-Scale Plasma Jets. Plasma Chemistry and Plasma Processing, 2023, 43(6): 1475-1488. DOI:10.1007/s11090-023-10404-0 |
7. | Liu, Z., Gao, Y., Pang, B. et al. Comparison of the physicochemical properties and inactivation against tumor cells of PAW induced by underwater single-hole and multi-hole bubble plasma. Journal of Physics D: Applied Physics, 2022, 55(29): 295202. DOI:10.1088/1361-6463/ac6a8a |
8. | Liu, F., Nie, L., Lu, X. On the green aurora emission of Ar atmospheric pressure plasma. Plasma Science and Technology, 2022, 24(5): 055408. DOI:10.1088/2058-6272/ac52ec |
9. | Ouyang, W., Ding, C., Liu, Q. et al. Effect of material properties on electron density and electron energy in helium atmospheric pressure plasma jet. Results in Physics, 2022. DOI:10.1016/j.rinp.2022.105215 |
10. | Pang, B., Liu, Z., Wang, S. et al. Discharge mode transition in a He/Ar atmospheric pressure plasma jet and its inactivation effect against tumor cells in vitro. Journal of Applied Physics, 2021, 130(15): 153301. DOI:10.1063/5.0063135 |
11. | Sharma, N.K., Misra, S., Varun, Choyal, Y. et al. Analysis of Discharge Characteristics of Cold Atmospheric Pressure Plasma Jet. IEEE Transactions on Plasma Science, 2021, 49(9): 2799-2805. DOI:10.1109/TPS.2021.3106792 |
12. | Sharma, N.K., Misra, S., Varun, Pal, U.N. Experimental and simulation analysis of dielectric barrier discharge based pulsed cold atmospheric pressure plasma jet. Physics of Plasmas, 2020, 27(11): 113502. DOI:10.1063/5.0018901 |
13. | Nguyen, D.B., Trinh, Q.H., Hossain, M.M. et al. Enhancement of plasma-assisted catalytic CO2 reforming of CH4 to syngas by avoiding outside air discharges from ground electrode. International Journal of Hydrogen Energy, 2020, 45(36): 18519-18532. DOI:10.1016/j.ijhydene.2019.06.167 |
14. | Nguyen, D.B., Trinh, Q.H., Mok, Y.S. et al. Generation of cold atmospheric plasma jet by a coaxial double dielectric barrier reactor. Plasma Sources Science and Technology, 2020, 29(3): 035014. DOI:10.1088/1361-6595/ab6ebd |