Advanced Search+
Zhen ZHOU (周振), Tao ZHANG (张涛), Mingfu WU (吴茗甫), Kaixuan YE (叶凯萱), Fubin ZHONG (钟富彬), Jia HUANG (黄佳), Kangning GENG (耿康宁), Yukai LIU (刘煜凯), Gongshun LI (李恭顺), Haoming XIANG (向皓明), Yumin WANG (王嵎民), Fei WEN (文斐), Sanqiu LIU (刘三秋). Experimental study of core and edge fluctuations by reflectometry on EAST tokamak[J]. Plasma Science and Technology, 2021, 23(7): 75101-075101. DOI: 10.1088/2058-6272/abf4b5
Citation: Zhen ZHOU (周振), Tao ZHANG (张涛), Mingfu WU (吴茗甫), Kaixuan YE (叶凯萱), Fubin ZHONG (钟富彬), Jia HUANG (黄佳), Kangning GENG (耿康宁), Yukai LIU (刘煜凯), Gongshun LI (李恭顺), Haoming XIANG (向皓明), Yumin WANG (王嵎民), Fei WEN (文斐), Sanqiu LIU (刘三秋). Experimental study of core and edge fluctuations by reflectometry on EAST tokamak[J]. Plasma Science and Technology, 2021, 23(7): 75101-075101. DOI: 10.1088/2058-6272/abf4b5

Experimental study of core and edge fluctuations by reflectometry on EAST tokamak

Funds: The authors are grateful to Dr C. Zhou who helped to analyze the DBS data. This work has been supported by the National Key R&D Program of China (No. 2017YFE0301205), and National Natural Science Foundation of China (Nos. 11875289, 11675211, 11805136, and 12075284).
More Information
  • Received Date: November 12, 2020
  • Revised Date: March 31, 2021
  • Accepted Date: April 01, 2021
  • An eight-channel poloidal correlation reflectometer (PCR) with O-mode polarization has been installed in the EAST tokamak to measure the fluctuations from core to edge. The PCR launches eight different frequency microwaves (20.4, 24.8, 33, 40, 42.4, 48, 52.6, 57.2 GHz) into the plasma from the low field side and two poloidally separated antennae are used to receive the reflected waves. As a result, the diagnostic can measure fluctuations in eight (radial)× two (poloidal) spatial positions. The diagnostic has been applied to study the core and edge pedestal fluctuations during an inter-ELM phase in H-mode plasma. This inter-ELM phase can be divided into two stages. In the first stage, a low frequency (<50 kHz) broadband fluctuation dominates in the pedestal gradient region. In the second stage, this fluctuation is strongly suppressed and quasi-coherent fluctuations (QCFs) appear. The QCF's amplitude increases with the pedestal density gradient, implying density gradient driven instabilities. But the core fluctuations inside the pedestal show no evident changes during the inter-ELM phase.
  • [1]
    Wesson J 2011 Tokamaks (Oxford: Oxford University Press)
    [2]
    Horton W 1999 Rev. Mod. Phys. 71 735
    [3]
    Doyle E J et al 2007 Nucl. Fusion 47 S18
    [4]
    Wan Y X et al 2017 Nucl. Fusion 57 102009
    [5]
    Nazikian R, Kramer G J and Valeo E 2001 Phys. Plasmas 8 1840
    [6]
    Mazzucato E 1998 Rev. Sci. Instrum. 69 2201
    [7]
    Vershkov V A et al 2011 Nucl. Fusion 51 094019
    [8]
    Krämer-Flecken A et al 2010 Rev. Sci. Instrum. 81 113502
    [9]
    Soldatov S, Krämer-Flecken A and Zorenko O 2011 Rev. Sci.Instrum. 82 033513
    [10]
    Krämer-Flecken A et al 2004 Nucl. Fusion 44 1143
    [11]
    Shinohara K et al 1999 Rev. Sci. Instrum. 70 4246
    [12]
    Xiang H M et al 2018 Rev. Sci. Instrum. 89 10H103
    [13]
    Xiang H M et al 2019 Nucl. Fusion 59 106037
    [14]
    Lin Y et al 2001 Plasma Phys. Control. Fusion 43 L1
    [15]
    Schmitz L et al 2009 Nucl. Fusion 49 095004
    [16]
    Ernst D R et al 2016 Phys. Plasmas 23 056112
    [17]
    Yan Z et al 2011 Phys. Rev. Lett. 107 055004
    [18]
    Diallo A et al 2014 Phys. Rev. Lett. 112 115001
    [19]
    Diallo A et al 2015 Phys. Plasmas 22 056111
    [20]
    Laggner F M et al 2016 Plasma Phys. Control. Fusion 58 065005
    [21]
    Zhong W L et al 2016 Plasma Phys. Control. Fusion 58 065001
    [22]
    Gao X et al 2015 Nucl. Fusion 55 083015
    [23]
    Zhang T et al 2017 Plasma Phys. Control. Fusion 59 065012
    [24]
    Chen R et al 2018 Nucl. Fusion 58 112004
    [25]
    Qu H et al 2015 Rev. Sci. Instrum. 86 083503
    [26]
    Hu J Q et al 2017 Rev. Sci. Instrum. 88 073504
    [27]
    Wang S X et al 2018 Nucl. Fusion 58 112013
    [28]
    Vanovac B et al 2018 Nucl. Fusion 58 112011
    [29]
    Diallo A et al 2018 Phys. Rev. Lett. 121 235001
    [30]
    Tang T F et al 2018 Phys. Plasmas 25 122510
  • Related Articles

    [1]S PUROHIT, Y SUZUKI, S OHDACHI, S YAMAMOTO. Soft x-ray tomographic reconstruction of Heliotron J plasma for the study of magnetohydrodynamic equilibrium and stability[J]. Plasma Science and Technology, 2019, 21(6): 65102-065102. DOI: 10.1088/2058-6272/ab0846
    [2]Luying NIU(牛璐莹), Hongrui CAO (曹宏睿), Kun XU(徐坤), Liqun HU(胡立群). Neutronic analysis of ITER radial x-ray camera[J]. Plasma Science and Technology, 2019, 21(2): 25601-025601. DOI: 10.1088/2058-6272/aaeba5
    [3]Peng LIU (刘朋), Xuesong LIU (刘雪松), Jun SHEN (沈俊), Yongxiang YIN (印永祥), Tao YANG (杨涛), Qiang HUANG (黄强), Daniel AUERBACH, Aart W KLEIYN. CO2 conversion by thermal plasma with carbon as reducing agent: high CO yield and energy efficiency[J]. Plasma Science and Technology, 2019, 21(1): 12001-012001. DOI: 10.1088/2058-6272/aadf30
    [4]Xinshuai YANG (杨新帅), Ruiji HU (胡睿佶), Jun CHEN (陈俊), Fudi WANG (王福地), Jia FU (符佳), Yingying LI (李颖颖), Hongming ZHANG (张洪明), Yongcai SHEN (沈永才), Xianghui YIN (尹相辉), Bo LYU (吕波), EAST team. Measurement of impurity lines with two- crystal x-ray spectrometers on EAST[J]. Plasma Science and Technology, 2018, 20(12): 124001. DOI: 10.1088/2058-6272/aad177
    [5]WANG Yu (王玉), SU Dandan (苏丹丹), LI Yingjun (李英骏). Hydrodynamics of Exploding Foil X-Ray Lasers with Time-Dependent Ionization Effect[J]. Plasma Science and Technology, 2016, 18(12): 1181-1185. DOI: 10.1088/1009-0630/18/12/07
    [6]XU Xiufeng (徐修峰), LI Shiping (李世平), CAO Hongrui (曹宏睿), XIAO Rui (肖锐), et al.. A Simulation Study on the Flash X-Ray Spectra Spatial Distribution[J]. Plasma Science and Technology, 2013, 15(11): 1165-1168. DOI: 10.1088/1009-0630/15/11/16
    [7]SONG Tianming (宋天明), YANG Jiamin (杨家敏), YANG Dong (杨冬), et al.. Experimental Study of the X-Ray Radiation Source at Approximately Constant Radiation Temperature[J]. Plasma Science and Technology, 2013, 15(11): 1108-1111. DOI: 10.1088/1009-0630/15/11/06
    [8]ZHANG Xiaoding (张小丁), ZHANG Jiyan (张继彦), YANG Guohong (杨国洪), et al.. A High-Efficiency X-Ray Crystal Spectrometer for X-Ray Thomson Scattering[J]. Plasma Science and Technology, 2013, 15(8): 755-759. DOI: 10.1088/1009-0630/15/8/07
    [9]HU Guangyue (胡广月), ZHANG Xiaoding (张小丁), ZHENG Jian (郑坚), LEI An-le (雷安乐), SHEN Baifei (沈百飞), XU Zhizhan, et al. Demonstration of X-ray Thomson Scattering on Shenguang-Ⅱ Laser Facility[J]. Plasma Science and Technology, 2012, 14(10): 864-870. DOI: 10.1088/1009-0630/14/10/02
    [10]LIU Xun (刘勋), LI Yutong (李玉同), ZHONG Jiayong (仲佳勇), DONG Quanli (董全力), WANG Shoujun (王首钧), ZHANG Lei (张蕾), ZHU Jianqiang (朱健强), ZHAO Gang (赵刚), ZHANG Jie (张杰). Characteristics of Plasma Jets in Laser-Driven Magnetic Reconnection[J]. Plasma Science and Technology, 2012, 14(2): 97-101. DOI: 10.1088/1009-0630/14/2/03
  • Cited by

    Periodical cited type(1)

    1. Zhang, L., Wang, X., Zheng, J. et al. Linear characteristics of dust acoustic waves in two dimensional inhomogeneous complex plasmas. AIP Advances, 2023, 13(5): 055012. DOI:10.1063/5.0150589

    Other cited types(0)

Catalog

    Article views (185) PDF downloads (172) Cited by(1)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return