Advanced Search+
Tao FU (傅涛), Tianbo YANG (杨天波), Yinbing AN (安银冰), Qi LI (李琦), Zilan DENG (邓子岚). An active tunable Fano switch in a plasma-filled superlattice array[J]. Plasma Science and Technology, 2021, 23(7): 75502-075502. DOI: 10.1088/2058-6272/abf54a
Citation: Tao FU (傅涛), Tianbo YANG (杨天波), Yinbing AN (安银冰), Qi LI (李琦), Zilan DENG (邓子岚). An active tunable Fano switch in a plasma-filled superlattice array[J]. Plasma Science and Technology, 2021, 23(7): 75502-075502. DOI: 10.1088/2058-6272/abf54a

An active tunable Fano switch in a plasma-filled superlattice array

Funds: This work was supported by National Natural Science Foundation of China (Nos. 11965009, 61761010, 61765004, 61764001 and 62075084) and Natural Science Foundation of Guangxi (Nos. 2018JJA170010 and 2018GXNSFAA281193), and by the Guangdong Basic and Applied Basic Research Foundation (No. 2020A1515010615).
More Information
  • Received Date: January 21, 2021
  • Revised Date: March 30, 2021
  • Accepted Date: April 05, 2021
  • We propose a Fano switch arising from the superlattice array of a plasma-filled quartz tube, which can be tuned and reconfigured by the plasma density in the tube. The generation of the switch depends on a Fano band that is induced by the interference between the Mie resonance in an isolated cylinder and Bragg scattering in a periodic array. The underlying dispersion characteristics reveal that a localized tunable flat band corresponding to the Mie resonance plays an important role in the appearance of the Fano resonance. This active tunable switch can be potentially applied to microwave communications as a single-pole multi-throw switch and to monitor environmental variables that impact the plasma density.
  • [1]
    Wang B, Rodríguez J A and Cappelli M A 2019 Plasma Sources Sci. Technol. 28 02LT01
    [2]
    Jiang N, Zhuo X L and Wang J F 2018 Chem. Rev. 118 3054
    [3]
    Wang B and Cappelli M A 2016 Appl. Phys. Lett. 108 161101
    [4]
    Tan H Y et al 2018 IEEE Trans. Plasma Sci. 46 539
    [5]
    Chen W C, Liu Y L and Guo B 2019 Phys. Plasmas 26 052110
    [6]
    Pourali N and Bahador H 2019 Phys. Plasmas 26 013515
    [7]
    Gao K Y et al 2020 Appl. Sci. 10 5572
    [8]
    Iwai A et al 2020 Phys. Plasmas 27 023511
    [9]
    Paliwoda M C and Rovey J L 2020 Phys. Plasmas 27 023516
    [10]
    Zhang H F and Liu S B 2016 AIP Adv. 6 085116
    [11]
    Tan H Y et al 2019 IEEE Trans. Plasma Sci. 47 3986
    [12]
    Sakai O, Sakaguchi T and Tachibana K 2007 J. Appl. Phys.101 073304
    [13]
    Sun P P et al 2019 Appl. Phys. Rev. 6 041406
    [14]
    Zhang W D et al 2020 Phys. Plasmas 27 063508
    [15]
    Zhang H F 2020 Optik 206 163744
    [16]
    Wang Y L, Liu S and Zhong S Y 2020 Opt. Commun. 473 125985
    [17]
    Kong X K et al 2010 Phys. Plasmas 17 103506
    [18]
    Tan H Y et al 2021 J. Phys. D: Appl. Phys. 54 085106
    [19]
    Gao Y J, Ye Q Y and Zhang J 2020 Optik 218 164972
    [20]
    Peter M 2015 Phys. Rev. A 92 043814
    [21]
    Fano U 1961 Phys. Rev. 124 1866
    [22]
    Chang W S et al 2012 Nano Lett. 12 4977
    [23]
    Amin M, Ramzan R and Siddiqui O 2017 Appl. Phys. Lett. 110 181904
    [24]
    Rezaei M H and Yavari M H 2019 Opt. Quant. Electron.51 237
    [25]
    Rybin M V et al 2009 Phys. Rev. Lett. 103 023901
    [26]
    Rybin M V et al 2013 Opt. Express 21 30107
    [27]
    Zangeneh-Nejad F and Fleury R 2019 Phys. Rev. Lett. 122 014301
    [28]
    Cai D J et al 2015 J. Phys. Chem. C 119 4252
    [29]
    Hao Z Q et al 2017 Mater. Res. Express 4 095006
    [30]
    Hu X Z, Zheng D Y and Lin Y S 2020 Appl. Phys. A 126 110
    [31]
    Lee E et al 2016 Opt. Express 24 25684
    [32]
    Liu J T, Liu Z and Hu H F 2019 Sci. Rep. 9 2414
    [33]
    Chen Z et al 2015 IEEE Photonics J. 7 2701009
    [34]
    Deng Z L et al 2017 IEEE Photonics J. 9 4801107
    [35]
    Kong X K et al 2012 IEEE Photonics J. 4 856
    [36]
    Chen H J et al 2015 ACS Nano 9 1926
    [37]
    Chew W C 1990 Waves and Fields in Inhomogeneous Media (New York: Van Nostrand Reinhold)
    [38]
    Diaz-Valencia B F, Mejía-Salazar J R and Porras-Montenegro N 2015 Superlattices Microstruct. 85 608
    [39]
    Myoung N et al 2019 Sci. Rep. 9 2862
  • Related Articles

    [1]Rongxiao ZHAI (翟戎骁), Tao HUANG (黄涛), Peitian CONG (丛培天), Weixi LUO (罗维熙), Zhiguo WANG (王志国), Tianyang ZHANG (张天洋), Jiahui YIN (尹佳辉). Comparative study on breakdown characteristics of trigger gap and overvoltage gap in a gas pressurized closing switch[J]. Plasma Science and Technology, 2019, 21(1): 15505-015505. DOI: 10.1088/2058-6272/aae432
    [2]Rongxiao ZHAI (翟戎骁), Mengtong QIU (邱孟通), Weixi LUO (罗维熙), Peitian CONG (丛培天), Tao HUANG (黄涛), Jiahui YIN (尹佳辉), Tianyang ZHANG (张天洋). Experimental investigation on the development characteristics of initial electrons in a gas pressurized closing switch under DC voltage[J]. Plasma Science and Technology, 2018, 20(4): 45505-045505. DOI: 10.1088/2058-6272/aaa8d8
    [3]ihao TIE (铁维昊), Cui MENG (孟萃), Yuting ZHANG (张雨婷), Zirang YAN (闫自让), Qiaogen ZHANG (张乔根). Analysis on discharge process of a plasma-jet trigered gas spark switch[J]. Plasma Science and Technology, 2018, 20(1): 14009-014009. DOI: 10.1088/2058-6272/aa8cbe
    [4]WU Yifei (吴益飞), REN Zhigang (任志刚), FENG Ying (冯英), LI Mei (李美), ZHANG Hantian (张含天). Analysis of Fault Arc in High-Speed Switch Applied in Hybrid Circuit Breaker[J]. Plasma Science and Technology, 2016, 18(3): 299-304. DOI: 10.1088/1009-0630/18/3/14
    [5]HU Yixiang(呼义翔), ZENG Jiangtao(曾江涛), SUN Fengju(孙凤举), WEI Hao(魏浩), YIN Jiahui(尹佳辉), CONG Peitian(丛培天), QIU Aici(邱爱慈). Modeling Methods for the Main Switch of High Pulsed-Power Facilities Based on Transmission Line Code[J]. Plasma Science and Technology, 2014, 16(9): 873-876. DOI: 10.1088/1009-0630/16/9/12
    [6]HUANG Zhongde(黄忠德), YAO Xueling(姚学玲), CHEN Jingliang(陈景亮), QIU Aici(邱爱慈). Experimental Research of ZnO Surface Flashover Trigger Device of Pseudo-Spark Switch[J]. Plasma Science and Technology, 2014, 16(5): 506-511. DOI: 10.1088/1009-0630/16/5/11
    [7]SANG Ziru(桑子儒), LI Feng(李锋), JIANG Xiao(江晓), JIN Ge(金革). A Reconfigurable Instrument System for Nuclear and Particle Physics Experiments[J]. Plasma Science and Technology, 2014, 16(4): 400-405. DOI: 10.1088/1009-0630/16/4/18
    [8]YAO Xueling(姚学玲), CHEN Jingliang(陈景亮), HU Shangmao(胡上茂). Emission Current Characteristics of Triggered Device of Vacuum Switch[J]. Plasma Science and Technology, 2014, 16(4): 380-384. DOI: 10.1088/1009-0630/16/4/14
    [9]LIU Xuandong (刘轩东), WANG Hu (王虎), LI Xiaoang (李晓昂), ZHANG Qiaogen (张乔根), et al.. Estimation of Surface Roughness due to Electrode Erosion in Field-Distortion Gas Switch[J]. Plasma Science and Technology, 2013, 15(8): 812-816. DOI: 10.1088/1009-0630/15/8/18
    [10]SHANG Chao, LIANG Lin, YU Yuehui, WU Yongjun, LI Hailiang. Experimental Study of Reversely Switched Dynistor Discharge Based on Gap Breakdown Load[J]. Plasma Science and Technology, 2011, 13(1): 121-124.

Catalog

    Article views (129) PDF downloads (157) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return