Advanced Search+
Jingyi LI (李婧祎), Wei ZHANG (张巍), Yu ZHOU (周宇), Boshi YUAN (苑博识), Jixing CAI (蔡继兴), Guangyong JIN (金光勇). The acceleration mechanism of shock wave induced by millisecond-nanosecond combined-pulse laser on silicon[J]. Plasma Science and Technology, 2021, 23(5): 55507-055507. DOI: 10.1088/2058-6272/abf729
Citation: Jingyi LI (李婧祎), Wei ZHANG (张巍), Yu ZHOU (周宇), Boshi YUAN (苑博识), Jixing CAI (蔡继兴), Guangyong JIN (金光勇). The acceleration mechanism of shock wave induced by millisecond-nanosecond combined-pulse laser on silicon[J]. Plasma Science and Technology, 2021, 23(5): 55507-055507. DOI: 10.1088/2058-6272/abf729

The acceleration mechanism of shock wave induced by millisecond-nanosecond combined-pulse laser on silicon

Funds: This study is supported by the Natural Science Foundation of Jilin Province (No. 20200201194JC), the Education Department of Jilin Province (No. JJKH20200735KJ), and National Natural Science Youth Science Fund Project (No. 62005023). We really appreciate Jilin Key Laboratory of Solid-state Laser Technology and Application for supporting our experiment.
More Information
  • Received Date: January 11, 2021
  • Revised Date: April 10, 2021
  • Accepted Date: April 11, 2021
  • The velocity variation law of shock wave induced by millisecond-nanosecond combined-pulse laser has been investigated experimentally. The pulse delay and laser energy are important experimental variables. The method of laser shadowgraphy is used in the experiment. Experimental results show that when the pulse delay is 2.4 ms, the ms and ns laser energy density is 301 J cm−2 and 12 J cm−2, respectively, the velocity of shock wave is 1.09 times faster than that induced by single ns pulse laser. It is inferred that the shock wave propagates in the plasma is faster than that in air. When the ms and ns laser energy density is 414.58 and 24 J cm−2, the velocity of shock wave shows rising trend with pulse delay in a range of 1.4 ms > Δt > 0.8 ms. It is indicated that with the increase of ns laser energy, the laser energy absorbed by laser-supported absorption wave increases. The mechanism of inverse bremsstrahlung absorption acts with target surface absorption simultaneously during the ns laser irradiation. Thus, the phenomenon of the double shock wave is induced. The numerical results of the phenomenon were accordance with experiment. The results of this research can provide a reference for the field of laser propulsion.
  • [1]
    Tao S and Wu B X 2013 Appl. Phys. B 113 251
    [2]
    Yu H C et al 2019 Opt. Express 27 9763
    [3]
    Chen J et al 2010 Chin. Opt. Lett. 8 771
    [4]
    Raǐzer Y P 1965 J. Exp. Theor. Phys. 21 1009
    [5]
    Surzhikov S T 2000 Quantum Electron. 30 416
    [6]
    Surzhikov S T 2009 High Temp. 47 307
    [7]
    Daiber J W and Thompson H M 1967 Phys. Fluids 10 1162
    [8]
    Maher W E, Hall R B and Johnson R R 1974 J. Appl. Phys.45 2138
    [9]
    Li K M et al 2020 Opt. Laser Technol. 130 106361
    [10]
    Jiang Y F et al 2013 Opt. Laser Technol. 45 598
    [11]
    Lee J M and Watkins K G 2001 J. Appl. Phys. 89 6496
    [12]
    Lim H et al 2005 J. Appl. Phys. 97 054903
    [13]
    Cetinkaya C, Vanderwood R and Rowell M 2002 J. Adhes. Sci.Technol. 16 1201
    [14]
    Boueri M et al 2009 Appl. Surf. Sci. 255 9566
    [15]
    Lowder J E et al 1973 J. Appl. Phys. 44 2759
    [16]
    Gacek S and Wang X W 2008 J. Appl. Phys. 104 126101
    [17]
    Gacek S and Wang X W 2009 Appl. Phys. A 94 675
    [18]
    Cao S Q et al 2018 Phys. Plasmas 25 063302
    [19]
    Ma Q L et al 2012 J. Appl. Phys. 111 053301
    [20]
    Choudhury K et al 2016 Phys. Plasmas 23 042108
    [21]
    Kumar B et al 2015 Phys. Plasmas 22 935
    [22]
    Guthikonda N et al 2020 Phys. Plasmas 27 023107
    [23]
    Zhang W et al 2016 Chin. Phys. Lett. 33 014205
    [24]
    Bai X S et al 2013 Spectrochim. Acta B 87 27
    [25]
    Bai X S et al 2015 Spectrochim. Acta B 113 158
    [26]
    Noll R et al 2004 J. Anal. At. Spectrom. 19 419
    [27]
    Wu B X, Zhou Y and Forsman A 2009 Appl. Phys. Lett. 95 251109
    [28]
    Bogaerts A, Chen Z Y and Autrique D 2008 Spectrochim. Acta B 63 746
    [29]
    Cao S Q et al 2020 J. Quant. Spectrosc. Radiat. Transf. 242 106773
    [30]
    Yang Z F et al 2015 Phys. Plasmas 22 073511
    [31]
    Lv X M et al 2017 J. Appl. Phys. 121 113102
    [32]
    Lv X M et al 2018 AIP Adv. 8 055025
    [33]
    Yuan B S et al 2018 Appl. Opt. 57 5743
    [34]
    Yuan B S et al 2018 Materials 11 1419
    [35]
    Pan Y X et al 2015 Opt. Express 23 765
    [36]
    Pan Y X et al 2016 Opt. Lett. 41 2807
    [37]
    Zhang W et al 2016 Laser Phys. 26 015001
    [38]
    Key M H 1969 J. Phys. B At. Mol. Phys. 2 544
    [39]
    Andreopoulos J et al 1989 AIAA J. 27 862
    [40]
    Liou W W, Huang G and Shih T H 2000 Comput. Fluids 29 275
    [41]
    Kato S, Kawakami R and Mima K 1991 Phys. Rev. A 43 5560
    [42]
    Li J Y et al 2020 Appl. Opt. 59 7338
  • Related Articles

    [1]Lixue WANG, Jixing CAI. Study on the effect of focal position change on the expansion velocity and propagation mechanism of plasma generated by millisecond pulsed laser-induced fused silica[J]. Plasma Science and Technology, 2023, 25(3): 035507. DOI: 10.1088/2058-6272/ac9892
    [2]Yakun LIU (刘亚坤), Zhengcai FU (傅正财), Quanzhen LIU (刘全桢), Baoquan LIU (刘宝全), Anirban GUHA. Experimental and analytical investigation on metal damage suffered from simulated lightning currents[J]. Plasma Science and Technology, 2017, 19(12): 125301. DOI: 10.1088/2058-6272/aa8aca
    [3]QI Xiaohua (齐晓华), YANG Liang (杨亮), YAN Huijie (闫慧杰), JIN Ying (金英), HUA Yue (滑跃), REN Chunsheng (任春生). Experimental Study on Surface Dielectric Barrier Discharge Plasma Actuator with Different Encapsulated Electrode Widths for Airflow Control at Atmospheric Pressure[J]. Plasma Science and Technology, 2016, 18(10): 1005-1011. DOI: 10.1088/1009-0630/18/10/07
    [4]LIU Meng (刘猛), HE Tie (何铁), YAN Jie (言杰), KE Jianlin (柯建林), LIN Jufang (林菊芳), LU Biao (卢彪). Damage Characteristics of TiD2 Films Irradiated by a Mixed Pulsed Beam of Titanium and Hydrogen Ions[J]. Plasma Science and Technology, 2016, 18(7): 764-767. DOI: 10.1088/1009-0630/18/7/11
    [5]TANG Enling (唐恩凌), WU Jin (吴尽), WANG Meng (王猛), ZHANG Lijiao (张立佼), XIANG Shenghai (相升海), XIA Jin (夏瑾), LIU Shuhua (刘淑华), HE Liping (贺丽萍), HAN Yafei (韩雅菲), XU Mingyang (徐名扬), ZHANG Shuang (张爽), YUAN Jianfei (袁健飞). Damage Characteristics of the Logical Chip Module Due to Plasma Created by Hypervelocity Impacts[J]. Plasma Science and Technology, 2016, 18(4): 412-416. DOI: 10.1088/1009-0630/18/4/14
    [6]LI Hailing(李海玲), WANG Qing(王庆), BA Dechun(巴德纯). Helium Plasma Damage of Low-k Carbon Doped Silica Film: the Effect of Si Dangling Bonds on the Dielectric Constant[J]. Plasma Science and Technology, 2014, 16(11): 1050-1053. DOI: 10.1088/1009-0630/16/11/09
    [7]NIU Guojian(牛国鉴), LI Xiaochun(李小椿), DING Rui(丁锐), XU Qian(徐倩), LUO Guangnan(罗广南). Molecular Dynamics Simulations of Deposition and Damage on Tungsten Plasma-Facing Materials by Tungsten Dust[J]. Plasma Science and Technology, 2014, 16(8): 805-808. DOI: 10.1088/1009-0630/16/8/13
    [8]Miyuki YAJIMA, Masato YAMAGIWA, Shin KAJITA, Noriyasu OHNO, Masayuki TOKITANI, Arimichi TAKAYAM, Seiki SAITO, Atsushi M. ITO, Hiroaki NAKAMURA, Naoaki YOSHIDA. Comparison of Damages on Tungsten Surface Exposed to Noble Gas Plasmas[J]. Plasma Science and Technology, 2013, 15(3): 282-286. DOI: 10.1088/1009-0630/15/3/18
    [9]CHEN Zhaoquan (陈兆权), LIU Minghai (刘明海), HU Yelin (胡业林), ZHENG Xiaoliang (郑晓亮), LI Ping (李平), XIA Guangqing (夏广庆). Character Diagnosis for Surface-Wave Plasmas Excited by Surface Plasmon Polaritons[J]. Plasma Science and Technology, 2012, 14(8): 754-758. DOI: 10.1088/1009-0630/14/8/13
    [10]LIU Xuelan (刘雪兰), XU An (许安), DAI Yin (戴银), YUAN Hang (袁航), YU Zengliang (余增亮). Surface Etching and DNA Damage Induced by Low-Energy Ion Irradiation in Yeast[J]. Plasma Science and Technology, 2011, 13(3): 381-384.
  • Cited by

    Periodical cited type(3)

    1. Zhang, B., Cai, J., Jin, L. et al. Research on the enhancement mechanism of subsonic gas flow field in cleaning the paint layer by combining laser-induced plasma shock. Journal of Physics D: Applied Physics, 2025, 58(17): 175206. DOI:10.1088/1361-6463/adc13d
    2. Liu, Y., Cai, J., Zhou, Y. et al. Tunable plasma and combustion wave dynamics in fused silica induced by combined millisecond-nanosecond laser pulses under airflow control. Physics of Fluids, 2025, 37(1): 011705. DOI:10.1063/5.0249948
    3. Akhtar, M.S., Alicherif, M., Wang, B. et al. Effect of rotating gliding discharges on the lean blow-off limit of biogas flames. Plasma Science and Technology, 2024, 26(10): 105505. DOI:10.1088/2058-6272/ad5ec2

    Other cited types(0)

Catalog

    Article views (117) PDF downloads (143) Cited by(3)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return