Advanced Search+
Sunggeun LEE, Hankwon LIM. Landau damping of twisted waves in Cairns distribution with anisotropic temperature[J]. Plasma Science and Technology, 2021, 23(8): 85001-085001. DOI: 10.1088/2058-6272/ac01be
Citation: Sunggeun LEE, Hankwon LIM. Landau damping of twisted waves in Cairns distribution with anisotropic temperature[J]. Plasma Science and Technology, 2021, 23(8): 85001-085001. DOI: 10.1088/2058-6272/ac01be

Landau damping of twisted waves in Cairns distribution with anisotropic temperature

Funds: This work was supported by the Korea Institute of Energy Technology Evaluation and Planning (KETEP) and the Ministry of Trade, Industry & Energy (MOTIE) of the Republic of Korea (No. 20183010032380).
More Information
  • Received Date: February 05, 2021
  • Revised Date: May 13, 2021
  • Accepted Date: May 13, 2021
  • The consideration of orbital angular momentum of an electric field (twisted mode) is applied to the kinetic theory of plasma. The linearized Vlasov–Poisson equation is solved for the anisotropic thermal distributed bi-Maxwellian and Cairns distributions of electrons to obtain the damping rates of twisted waves. The dispersion relation and Landau damping of Langmuir twisted modes are obtained. The presence of twisted modes opens up two more possibilities in Landau damping and dispersion relations. This may generate a mixture with ion sound waves. It seems to play the role of a control parameter of Landau damping.
  • [1]
    Landau L 1946 J. Phys.(USSR) 10 25 Landau L 1946 Zh. Eksp. Teor. Fiz. 16 574
    [2]
    Tonks L and Langmuir I 1929 Phys. Rev. 33 195
    [3]
    Malmberg J H and Wharton C B 1964 Phys. Rev. Lett. 13 184
    [4]
    Bertrand P et al 1994 Phys. Rev. E 49 5656
    [5]
    Dawson J M 1994 Phys. Scr. 1994 7
    [6]
    Cranmer S R and van Ballegooijen A A 2003 ApJ 594 573
    [7]
    Lerche I and Schlickeiser R 2001 Astron. Astrophys. 366 1008
    [8]
    FÅk B et al 1990 Phys. Rev. B 41 8732
    [9]
    Baier R et al 1992 Z. Phys. C Part. Fields 53 433
    [10]
    De Marco R 2007 A dynamical model for wave-particle interaction in collisionless plasmas PhD Thesis Università Degli Studi Della Calabria (http://dspace.unical.it:8080/jspui/bitstream/10955/546/1/tesi.pdf
    [11]
    Pavlos G P et al 2014 Phys. A: Stat. Mech. Appl. 395 58
    [12]
    Khan I A and Murtaza G 2018 Plasma Sci. Technol. 20 035302
    [13]
    Livadiotis G and McComas D J 2009 J. Geophys. Res.: Space Phys. 114 A11105
    [14]
    Mendonça J T 2012 Phys. Plasmas 19 112113
    [15]
    Arshad K and Mahmood S 2010 Phys. Plasmas 17 124501
    [16]
    Arshad K et al 2014 Phys. Plasmas 21 023704
    [17]
    Arshad K, Mahmood S and Mirza A M 2011 Phys. Plasmas 18 092115
    [18]
    Ki D H and Jung Y D 2011 Phys. Plasmas 18 014506
    [19]
    Rehman A and Shahzad M A 2020 Phys. Plasmas 27 100901
    [20]
    Molina-Terriza G, Torres J P and Torner L 2007 Nat. Phys.3 305
    [21]
    Allen L et al 1992 Phys. Rev. A 45 8185
    [22]
    Paterson C 2005 Phys. Rev. Lett. 94 153901
    [23]
    Chen Q, Qin H and Liu J 2017 Sci. Rep. 7 41731
    [24]
    Barnett S M and Allen L 1994 Opt. Commun. 110 670
    [25]
    Mendonça J T, Ali S and Thidé B 2009 Phys. Plasmas 16 112103
    [26]
    Mendonça J T 2012 Plasma Phys. Control. Fusion 54 124031
    [27]
    Ali S, Bukhari S and Mendonça J T 2016 Phys. Plasmas 23 033703
    [28]
    Bukhari S et al 2017 Contrib. Plasma Phys. 57 404
    [29]
    Shukla P K, Eliasson B and Stenflo L 2012 Phys. Rev. E 86 016403
    [30]
    Shukla P K 2013 J. Geophys. Res.: Space Phys. 118 1
    [31]
    Mendonça J T, Thide B and Then H 2009 Phys. Rev. Lett. 102 185005
    [32]
    Shukla P K 2012 Phys. Plasmas 19 083704
    [33]
    Harwit M 2003 ApJ. 597 1266
    [34]
    Elias N M II 2008 Astron. Astrophys. 492 883
    [35]
    Tamburini F et al 2011 Nat. Phys. 7 195
    [36]
    Bojowald M 2011 Nat. Phys. 7 188
    [37]
    Yang H and Casals M 2014 Phys. Rev. D 90 023014
    [38]
    Baral P et al 2020 Eur. Phys. J. C 80 326
    [39]
    Weibel E S 1959 Phys. Rev. Lett. 2 83
    [40]
    Zaheer S and Murtaza G 2007 Phys. Plasmas 14 022108
    [41]
    Kennel C F and Sagdeev R Z 1967 J. Geophys. Res. 72 3303
    [42]
    El-Taibany W F, Zedan N A and Taha R M 2018 Astrophys.Space Sci. 363 129
    [43]
    Abid A A et al 2015 Phys. Plasmas 22 084507
    [44]
    Ahmad N et al 2019 Plasma Sci. Technol. 21 065001
    [45]
    Debnath D and Bandyopadhyay A 2020 Astrophys. Space Sci.365 72
    [46]
    Khalid S, Qureshi M N S and Masood W 2018 Astrophys.Space Sci. 363 216
    [47]
    Tsallis C 1988 J. Stat. Phys.J. Stat. Phys. 52 479
    [48]
    Tsallis C 1995 Phys. A: Stat. Mech. Appl. 221 277
    [49]
    Liu J M et al 1994 Phys. Rev. Lett. 72 2717
    [50]
    Chen X C and Li X Q 2012 Phys. Rev. E 86 068401
    [51]
    Rehman A 2019 Astrophys. Space Sci. 364 90
    [52]
    Rehman A 2019 Astrophys. Space Sci. 364 90
    [53]
    Saberian E 2018 Phys. A: Stat. Mech. Appl. 490 289
    [54]
    López R A et al 2017 Phys. Plasmas 24 102119
    [55]
    Lima J A S, Silva R Jr and Santos J 2000 Phys. Rev. E 61 3260
    [56]
    Saberian E and Esfandyari-Kalejahi A 2014 Astrophys. Space Sci. 347 799
    [57]
    Arshad K, Rehman A and Mahmood S 2015 Phys. Plasmas 22 112114
    [58]
    Arshad K, Rehman A and Mahmood S 2016 Phys. Plasmas 23 052107
    [59]
    Khan S A, Rehman A and Mendonça J T 2014 Phys. Plasmas 21 092109
    [60]
    Demars H G and Schunk R W 1979 J. Phys. D: Appl. Phys.12 1051
    [61]
    Chew G F, Goldberger M L and Low F E 1956 Proc. R. Soc.London Ser. A 236 112
    [62]
    Chodura R and Pohl F 1971 Plasma Phys. 13 645
    [63]
    Arshad K et al 2017 Phys. Plasmas 24 033701
    [64]
    Arshad K and Poedts S 2020 Phys. Plasmas 27 122904
    [65]
    Khan I A et al 2018 Phys. Plasmas 25 082111
  • Related Articles

    [1]Haiying LI, Jiachen TONG, Wei DING, Bin XU, Lu BAI. Transmission characteristics of terahertz Bessel vortex beams through a multi-layered anisotropic magnetized plasma slab[J]. Plasma Science and Technology, 2022, 24(3): 035004. DOI: 10.1088/2058-6272/ac3ad7
    [2]Debing ZHANG, Limin YU, Erbing XUE, Xianmei ZHANG, Haijun REN. Anomalous transport driven by ion temperature gradient instability in an anisotropic deuterium-tritium plasma[J]. Plasma Science and Technology, 2022, 24(2): 025104. DOI: 10.1088/2058-6272/ac42bc
    [3]N AHMAD, A A ABID, Y AL-HADEETHI, M N S QURESHI, Saqib REHMAN. The effect of positive/negative ion on the dust grain charging process in a Vasyliunas-Cairns (VC)-distributed dusty plasma system[J]. Plasma Science and Technology, 2019, 21(6): 65001-065001. DOI: 10.1088/2058-6272/ab0333
    [4]Yue MING (明玥), Deng ZHOU (周登), Wenjia WANG (王文家). Geodesic acoustic modes in tokamak plasmas with anisotropic distribution and a radial equilibrium electric field[J]. Plasma Science and Technology, 2018, 20(8): 85101-085101. DOI: 10.1088/2058-6272/aabc5c
    [5]Wei WANG (王玮), Zhengxiong WANG (王正汹), Jiquan LI (李继全), Yasuaki KISHIMOTO, Jiaqi DONG (董家齐), Shu ZHENG (郑殊). Magnetic-island-induced ion temperature gradient mode: Landau damping, equilibrium magnetic shear and pressure flattening effects[J]. Plasma Science and Technology, 2018, 20(7): 75101-075101. DOI: 10.1088/2058-6272/aab48f
    [6]Imran Ali KHAN, G MURTAZA. Effect of kappa distribution on the damping rate of the obliquely propagating magnetosonic mode[J]. Plasma Science and Technology, 2018, 20(3): 35302-035302. DOI: 10.1088/2058-6272/aaa457
    [7]T. S. HAHM. Ion Heating from Nonlinear Landau Damping of High Mode Number Toroidal Alfvén Eigenmodes[J]. Plasma Science and Technology, 2015, 17(7): 534-538. DOI: 10.1088/1009-0630/17/7/02
    [8]ZHANG Shuangxi(张双喜), GAO Zhe(高喆), WU Wentao(武文韬), QIU Zhiyong(仇志勇). Damping of Geodesic Acoustic Mode by Trapped Electrons[J]. Plasma Science and Technology, 2014, 16(7): 650-656. DOI: 10.1088/1009-0630/16/7/04
    [9]XU Hui (徐慧), SHENG Zhengming (盛政明). Critical Initial Amplitude of Langmuir Wave Damping[J]. Plasma Science and Technology, 2012, 14(3): 181-268. DOI: 10.1088/1009-0630/14/3/01
    [10]M. RADMILOVIC-RADJENOVIC, B. RADJENOVIC. The Effects of Chemical (isotropic) and Anisotropic Etching Processes on the Roughening of Nanocomposite Substrates[J]. Plasma Science and Technology, 2010, 12(6): 673-676.
  • Cited by

    Periodical cited type(5)

    1. Zhong, F., Zhang, T., Li, G. et al. Pedestal dynamics and turbulence in H-mode density ramp-up experiment on EAST. Nuclear Fusion, 2024, 64(12): 126062. DOI:10.1088/1741-4326/ad8666
    2. Hao, G., Xu, J., Sun, Y. et al. Summary of the 11th Conference on Magnetic Confined Fusion Theory and Simulation. Plasma Science and Technology, 2024, 26(10): 101001. DOI:10.1088/2058-6272/ad5d8a
    3. Wu, M.-X., Xie, K., Liu, Y. et al. Diagnosing ratio of electron density to collision frequency of plasma surrounding scaled model in a shock tube using low-frequency alternating magnetic field phase shift. Chinese Physics B, 2024, 33(5): 055204. DOI:10.1088/1674-1056/ad2d56
    4. Su, P., Lan, H., Zhou, C. et al. Bursting core-localized ellipticity-induced Alfvén eigenmodes driven by energetic electrons during EAST ohmic discharges. Nuclear Fusion, 2024, 64(3): 036019. DOI:10.1088/1741-4326/ad1af7
    5. Zhang, F., Zhang, L., Zhang, W. et al. Line identification of extreme ultraviolet spectra from aluminum ions in EAST Tokamak plasmas. Physica Scripta, 2024, 99(2): 025615. DOI:10.1088/1402-4896/ad2049
    1. Zhong, F., Zhang, T., Li, G. et al. Pedestal dynamics and turbulence in H-mode density ramp-up experiment on EAST. Nuclear Fusion, 2024, 64(12): 126062. DOI:10.1088/1741-4326/ad8666
    2. Hao, G., Xu, J., Sun, Y. et al. Summary of the 11th Conference on Magnetic Confined Fusion Theory and Simulation. Plasma Science and Technology, 2024, 26(10): 101001. DOI:10.1088/2058-6272/ad5d8a
    3. Wu, M.-X., Xie, K., Liu, Y. et al. Diagnosing ratio of electron density to collision frequency of plasma surrounding scaled model in a shock tube using low-frequency alternating magnetic field phase shift. Chinese Physics B, 2024, 33(5): 055204. DOI:10.1088/1674-1056/ad2d56
    4. Su, P., Lan, H., Zhou, C. et al. Bursting core-localized ellipticity-induced Alfvén eigenmodes driven by energetic electrons during EAST ohmic discharges. Nuclear Fusion, 2024, 64(3): 036019. DOI:10.1088/1741-4326/ad1af7
    5. Zhang, F., Zhang, L., Zhang, W. et al. Line identification of extreme ultraviolet spectra from aluminum ions in EAST Tokamak plasmas. Physica Scripta, 2024, 99(2): 025615. DOI:10.1088/1402-4896/ad2049

    Other cited types(0)

Catalog

    Article views (109) PDF downloads (140) Cited by(5)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return