Advanced Search+
Xin ZENG (曾鑫), Yafang ZHANG (章亚芳), Liangyin GUO (郭良银), Wenquan GU (古文泉), Ping YUAN (袁萍), Linsheng WEI (魏林生). Ozone generation enhanced by silica catalyst in packed-bed DBD reactor[J]. Plasma Science and Technology, 2021, 23(8): 85501-085501. DOI: 10.1088/2058-6272/ac0244
Citation: Xin ZENG (曾鑫), Yafang ZHANG (章亚芳), Liangyin GUO (郭良银), Wenquan GU (古文泉), Ping YUAN (袁萍), Linsheng WEI (魏林生). Ozone generation enhanced by silica catalyst in packed-bed DBD reactor[J]. Plasma Science and Technology, 2021, 23(8): 85501-085501. DOI: 10.1088/2058-6272/ac0244

Ozone generation enhanced by silica catalyst in packed-bed DBD reactor

Funds: This work is supported by National Natural Science Foundation of China (No. 51867018), Jiangxi Province's Major Subject Academic and Technical Leader Training Program-Leading Talent Project (No. 20204BCJ22016), and the Innovation Fund Designed for Graduate Students of Jiangxi Province, China (No. YC2020-S118).
More Information
  • Received Date: March 24, 2021
  • Revised Date: May 12, 2021
  • Accepted Date: May 16, 2021
  • In this paper, three dielectric barrier discharge (DBD) configurations, which were plain DBD with no packing, DBD with packed pure quartz fibers and DBD with packed loaded quartz fibers, were employed to investigate the effect and catalytic mechanism of catalyst materials in a packed-bed ozone generator. From the experimental results, it was clear that the DBD configuration with packed pure fibers and packed loaded fibers promotes ozone generation. For the packed-bed reactor, ozone concentration and ozone yield were enhanced by an increase of electric field in the discharge gap with the packed-bed effect. Meanwhile, the enhancement of ozone concentration and yield for the DBD reactor packed by loaded fibers with silica nanoparticles was due to the catalysis of silica nanoparticles on the fiber surface. The adsorption of silica nanoparticles on the fiber surface can prolong the retention time of active species and enhance surface reactions.
  • [1]
    Wei L S, Peng B F and Zhang Y F 2016 Vacuum 125 123
    [2]
    Wei L S, Xu M and Zhang Y F 2017 Ozone Sci. Eng. 39 33
    [3]
    Wei L S 2016 Plasma Sci. Technol. 18 147
    [4]
    Teranishi K et al 2009 Plasma Sources Sci. Technol. 18 045011
    [5]
    Pekárek S 2014 Plasma Sources Sci. Technol. 23 062001
    [6]
    Gnapowski E, Gnapowski E and Pytka J 2018 Plasma Sci.Technol. 20 085505
    [7]
    Abdelaziz A A et al 2016 Plasma Sources Sci. Technol. 25 035012
    [8]
    Wei L S et al 2018 Plasma Sci. Technol. 20 125505
    [9]
    Yuan D K et al 2016 J. Phys. D Appl. Phys. 49 455203
    [10]
    Xie S R 2019 Plasma Sci. Technol. 21 055505
    [11]
    Chang J S, Lawless P A and Yamamoto T 1991 IEEE Trans.Plasma Sci. 19 1152
    [12]
    Al-Abduly A, Christensen P and Harvey A 2020 Plasma Sources Sci. Technol. 29 035002
    [13]
    Qin Y C et al 2018 Plasma Sci. Technol. 20 095501
    [14]
    Schmidt-Szalowski K and Borucka A 1989 Plasma Chem.Plasma Process. 9 235
    [15]
    Schmidt-Szalowski K, Borucka A and Jodzis S 1990 Plasma Chem. Plasma Process. 10 443
    [16]
    Jodzis S 2003 Ozone Sci. Eng. 25 63
    [17]
    Murphy A B and Morrow R 2002 IEEE Trans. Plasma Sci. 30 180
    [18]
    Chen H L, Lee H M and Chang M B 2006 Ozone Sci. Eng. 28 111
    [19]
    Huang W D, Ren T T and Xia W D 2007 Ozone Sci. Eng. 29 107
    [20]
    Wei L S, Deng Q S and Zhang Y F 2020 Vacuum 173 109145
    [21]
    Tu X et al 2011 J. Phys. D Appl. Phys. 44 274007
    [22]
    Kim H H and Ogata A 2011 Eur. Phys. J. Appl. Phys. 55 13806
    [23]
    Sung T L et al 2013 Vacuum 90 65
    [24]
    van Laer K and Bogaerts A 2016 Plasma Sources Sci. Technol.25 015002
    [25]
    Gadkari S and Gu S 2018 Phys. Plasmas 25 063513
    [26]
    Nassour K 2016 Ozone Sci. Eng. 38 70
    [27]
    Lopaev D V, Malykhin E M and Zyryanov S M 2011 J. Phys.D Appl. Phys. 44 015201
    [28]
    Lopaev D V, Malykhin E M and Zyryanov S M 2011 J. Phys.D Appl. Phys. 44 015202
    [29]
    Durme J V et al 2008 Appl. Catal. B Environ. 78 324
    [30]
    Chen H L 2009 Environ. Sci. Technol. 43 2216
  • Related Articles

    [1]Huan LIU (刘欢), Liang WANG (王亮), Guosheng XU (徐国盛), Fang DING (丁芳), Jianbin LIU (刘建斌), Jichan XU (许吉禅), Wei FENG (冯威), Guozhong DENG (邓国忠), Xingwei ZHENG (郑星炜), Yaowei YU (余耀伟), Hang SI (司杭), Haiqing LIU (刘海庆), Qingquan YANG (杨清泉), Zhen SUN (孙震), Houyang GUO (郭后扬). Preliminary study of divertor particle exhaust in the EAST superconducting tokamak[J]. Plasma Science and Technology, 2017, 19(9): 95101-095101. DOI: 10.1088/2058-6272/aa6f5a
    [2]Baoguo WANG (王保国), Dahuan ZHU (朱大焕), Rui DING (丁锐), Junling CHEN (陈俊凌). Thermal analysis on the EAST tungsten plasma facing components with shaping structure counteracting the misalignment issues[J]. Plasma Science and Technology, 2017, 19(2): 25603-025603. DOI: 10.1088/2058-6272/19/2/025603
    [3]Guozhong DENG (邓国忠), Liang WANG (王亮), Xiaoju LIU (刘晓菊), Yanmin DUAN (段艳敏), Jiansheng HU (胡建生), Changzheng LI (李长征), Ling ZHANG (张凌), Shaocheng LIU (刘少承), Huiqian WANG (汪惠乾), Liang CHEN (陈良), Jichan XU (许吉禅), Wei FENG (冯威), Jianbin LIU (刘建斌), Huan LIU (刘欢), Guosheng XU (徐国盛), Houyang GUO (郭后扬), Xiang GAO (高翔), the EAST team. Achieving temporary divertor plasma detachment with MARFE events by pellet injection in the EAST superconducting tokamak[J]. Plasma Science and Technology, 2017, 19(1): 15101-015101. DOI: 10.1088/1009-0630/19/1/015101
    [4]LIU Xiaolong (刘晓龙), Kazuo NAKAMURA, Tatsuya YOSHISUE, Osamu MITARAI, Makoto HASEGAWA, Kazutoshi TOKUNAGA, XUE Erbing (薛二兵), Hideki ZUSHI, Kazuaki HANADA, Akihide FUJISAWA, Hiroshi IDEI, et al.. H Loop Shaping Control for Plasma Vertical Position Instability on QUEST[J]. Plasma Science and Technology, 2013, 15(3): 295-299. DOI: 10.1088/1009-0630/15/3/21
    [5]WANG Zhongtian (王中天), WANG Long (王龙), LONG Yongxing (龙永兴), DONG Jiaqi (董家齐), HE Zhixiong (何志雄), LIU Yu (刘宇), TANG Changjian (唐昌建). Shaping Effects of the E-Fishbone in Tokamaks[J]. Plasma Science and Technology, 2013, 15(1): 12-16. DOI: 10.1088/1009-0630/15/1/03
    [6]ZHU Zhe (朱哲), ZHU Yinfeng (朱银锋), HUANG Ronglin (黄荣林), FU Peng (傅鹏), DING Yixiao(丁逸骁). Study on the Current-sharing Control System of the TF Power Supply for a Superconducting Tokamak[J]. Plasma Science and Technology, 2012, 14(10): 941-946. DOI: 10.1088/1009-0630/14/10/16
    [7]WANG Liang, XU Guosheng, CHANG Jiafeng, ZHANG Wei, YAN Ning, DING Siye..... Study of Scrape-Off-Layer Width in Ohmic and Lower Hybrid Wave Heated Double-Null Divertor Plasma in EAST[J]. Plasma Science and Technology, 2011, 13(4): 435-439.
    [8]K. HANADA, H. ZUSHI, H. IDEI, K. NAKAMURA, M. ISHIGURO, S. TASHIMA, E. I. KALINNIKOVA, M. SAKAMOTO, M. HASEGAWA, A. FUJISAWA, A. HIGASHIJIMA, S. KAWASAKI, H. NAKASHIMA, H. LIU, O. MITARAI, T. MAEKAWA. Non-inductive start up of QUEST plasma by RF power[J]. Plasma Science and Technology, 2011, 13(3): 307-311.
    [9]GAO Zhe. Analytical Theory of the Geodesic Acoustic Mode in the Small and Large Orbit Drift Width Limits and its Application in a Study of Plasma Shaping Effect[J]. Plasma Science and Technology, 2011, 13(1): 15-20.
    [10]NI Qionglin, FAN Tieshuan, ZHANG Xing, ZHANG Cheng, REN Qilong, HU Chundong. Predictive Calculation of Neutral Beam Heating Plasmas in EAST Tokamak by NUBEAM Code for Certain Parameter Ranges[J]. Plasma Science and Technology, 2010, 12(6): 661-667.

Catalog

    Article views (108) PDF downloads (80) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return