Advanced Search+
Yixuan ZHOU (周艺轩), Huajie WANG (王华杰), Yi YU (余羿), Yihang CHEN (陈逸航), Rui KE (柯锐), Min XU (许敏), Chijie XIAO (肖池阶), Zhanhui WANG (王占辉), Jiquan LI (李继全), Xuru DUAN (段旭如), Minyou YE (叶民友). Optical design of the Lyman alpha based beam emission spectroscopy (LAB) diagnostic on the HL-2A tokamak[J]. Plasma Science and Technology, 2021, 23(7): 75105-075105. DOI: 10.1088/2058-6272/ac0327
Citation: Yixuan ZHOU (周艺轩), Huajie WANG (王华杰), Yi YU (余羿), Yihang CHEN (陈逸航), Rui KE (柯锐), Min XU (许敏), Chijie XIAO (肖池阶), Zhanhui WANG (王占辉), Jiquan LI (李继全), Xuru DUAN (段旭如), Minyou YE (叶民友). Optical design of the Lyman alpha based beam emission spectroscopy (LAB) diagnostic on the HL-2A tokamak[J]. Plasma Science and Technology, 2021, 23(7): 75105-075105. DOI: 10.1088/2058-6272/ac0327

Optical design of the Lyman alpha based beam emission spectroscopy (LAB) diagnostic on the HL-2A tokamak

Funds: This work is supported by the National Key R&D Program of China (Nos. 2017YFE0301201 and 2018YFE0303102), National Natural Science Foundation of China (Nos. 11875124 and 12075241).
More Information
  • Received Date: February 08, 2021
  • Revised Date: May 12, 2021
  • Accepted Date: May 18, 2021
  • In this article, we present the optical design of a novel diagnostic on the HL-2A tokamak, i.e. the 20-channel edge Lyman-alpha beam emission spectroscopy, which is a promising solution for edge density turbulence research on tokamaks, as it offers the possibility of density fluctuation measurement with a 3.3 mm spatial resolution while maintains a high temporal resolution of 1 μs. The optical path, including the reflective collection optics, the high-dispersion spectrometer, and the linear detector array, is carefully optimized to obtain a good image quality and a high throughput. The maximum root mean square radius of the collection optics is 64 μm. The detected photon flux is estimated to be about 1011 photons/s/channel.
  • [1]
    de Grassie J S et al 2007 Phys. Plasmas 14 056115
    [2]
    Wagner F et al 1982 Phys. Rev. Lett. 49 1408
    [3]
    McKee G et al 1999 Rev. Sci. Instrum. 70 913
    [4]
    Boileau A et al 1989 Plasma Phys. Control. Fusion 31 779
    [5]
    Heidbrink W W 2010 Rev. Sci. Instrum. 81 10D727
    [6]
    Chung J et al 2014 Rev. Sci. Instrum. 85 11D827
    [7]
    Shafer M W et al 2006 Rev. Sci. Instrum. 77 10F110
    [8]
    Ke R et al 2018 Rev. Sci. Instrum. 89 10D122
    [9]
    Yu Y et al 2021 J. Fusion Eng. 40 13
    [10]
    McKee G R et al 2001 Rev. Sci. Instrum. 72 992
    [11]
    Field A R et al 2009 Rev. Sci. Instrum. 80 073503
    [12]
    Wang H J et al 2017 Rev. Sci. Instrum. 88 083505
    [13]
    Wu Y F et al 2020 Fusion Eng. Des. 156 111734
    [14]
    Smith W J 2008 Modern Optical Engineering: The Design of Optical Systems 4th edn (London: McGraw Hill))
    [15]
    Wilson R N 2004 Reflecting Telescope Optics I: Basic Design Theory and Its Historical Development 2nd edn (Berlin:Springer)
    [16]
    Kramida A et al 2020 NIST atomic spectra database https://doi.org10.18434/T4W30F
    [17]
    Hutchinson I H 2001 Plasma Phys. Control. Fusion 44 71
    [18]
    Kobayashi T, Yoshinuma M and Ida K 2020 Plasma Phys.Control. Fusion 62 125011
    [19]
    See https://optodiode.com/photodiodes-multielement-arraydetectors.html for information about the detector
    [20]
    Gaylord T K and Moharam M G 1985 Proc. IEEE 73 894
    [21]
    Moharam M G et al 1995 J. Opt. Soc. Am. A 12 1068
    [22]
    Liu H et al 2019 Fusion Eng. Des. 144 81

Catalog

    Article views (111) PDF downloads (114) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return