Advanced Search+
Zhaoying WANG (王召迎), Lixin GUO (郭立新), Jiangting LI (李江挺). Research on phase shift characteristics of electromagnetic wave in plasma[J]. Plasma Science and Technology, 2021, 23(7): 75001-075001. DOI: 10.1088/2058-6272/ac0328
Citation: Zhaoying WANG (王召迎), Lixin GUO (郭立新), Jiangting LI (李江挺). Research on phase shift characteristics of electromagnetic wave in plasma[J]. Plasma Science and Technology, 2021, 23(7): 75001-075001. DOI: 10.1088/2058-6272/ac0328

Research on phase shift characteristics of electromagnetic wave in plasma

Funds: Project supported by National Natural Science Foundation of China (Nos. U20B2059, 62071353, 61627901 and 62071348), the Foundation for Innovative Research Groups of the National Natural Science Foundation of China (No. 61621005), and the Key Laboratory Foundation (No. 6142502190203).
More Information
  • Received Date: March 09, 2021
  • Revised Date: May 12, 2021
  • Accepted Date: May 18, 2021
  • The phase shift characteristics reflect the state change of electromagnetic wave in plasma sheath and can be used to reveal deeply the action mechanism between electromagnetic wave and plasma sheath. In this paper, the phase shift characteristics of electromagnetic wave propagation in plasma were investigated. Firstly, the impact factors of phase shift including electron density, collision frequency and incident frequency were discussed. Then, the plasma with different electron density distribution profiles were employed to investigate the influence on the phase shift characteristics. In a real case, the plasma sheath around the hypersonic vehicle will affect and even break down the communication. Based on the hypersonic vehicle model, we studied the electromagnetic wave phase shift under different flight altitude, speed, and attack angle. The results indicate that the phase shift is inversely proportional to the flight altitude and positively proportional to the flight speed and attack angle. Our work provides a theoretical guidance for the further research of phase shift characteristics and parameters inversion in plasma.
  • [1]
    Chen W et al 2019 J. Quant. Spectrosc. Radiat. Transfer 232 66
    [2]
    Wang M Y et al 2016 IEEE Trans. Antennas Propag. 64 286
    [3]
    Bai B W et al 2014 IEEE Trans. Plasma Sci. 42 3365
    [4]
    Bian Z et al 2019 IEEE Trans. Plasma Sci. 47 4961
    [5]
    Liu Z W et al 2015 IEEE Trans. Plasma Sci. 43 3147
    [6]
    Jia J S et al 2016 Phys. Plasmas 23 043302
    [7]
    Li L Q et al 2017 IEEE Antennas Wirel. Propag. Lett. 16 2078
    [8]
    Yuan C X et al 2011 IEEE Trans. Plasma Sci. 39 1577
    [9]
    Li H et al 2016 Phys. Plasmas 23 073702
    [10]
    Zhang Y, Liu Y M and Li X P 2017 IEEE Trans. Antennas Propag. 65 5940
    [11]
    Wang Z Y et al 2019 IEEE Trans. Plasma Sci. 47 3978
    [12]
    Zhang Y Y, Xu G J and Zheng Z Q 2019 Optik 182 618
    [13]
    Song W J and Zhang H 2016 J. Electromagn. Waves Appl.30 1321
    [14]
    Liu J X et al 2018 Plasmonics 13 1699
    [15]
    Guo L X et al 2018 Phys. Plasmas 25 053707
    [16]
    Liu S H and Guo L X 2016 IEEE Trans. Plasma Sci. 44 2838
    [17]
    Britt C L 1989 IEEE Trans. Antennas Propag. 37 1181
    [18]
    Chen W et al 2016 IEEE Trans. Plasma Sci. 44 3235
    [19]
    Donato L D 2019 IEEE Trans. Plasma Sci. 47 1781
    [20]
    Jones A R, Stanic B V and Wooding E R 1968 Electron. Lett.4 392
    [21]
    Feng X J et al 2018 Resonance frequency inversion of cold unmagnetized plasma based on CDLT-FDTD and PSO methods 2018 IEEE Int. Conf. on Computational Electromagnetics (ICCEM) (Chengdu, China) (Piscataway, NJ: IEEE) p 1
    [22]
    Laroussi M 1999 Int. J. Infrared Millim. Waves 20 1501
    [23]
    Tudisco O et al 2013 Rev. Sci. Instrum. 84 033505
    [24]
    Gao R L et al 2016 Phys. Plasmas 23 063302
    [25]
    Du Y X, Li C L and Qin L 2017 IEEE Trans. Plasma Sci. 45 3182
    [26]
    Dan L et al 2017 Phys. Plasmas 24 093703
    [27]
    Shi L et al 2010 Research on phase shift characteristics of radio propagate through plasma sheath Proc. of the 9th Int. Symp.on Antennas, Propagation and EM Theory (ISAPE) (Guangzhou, China) (Piscataway, NJ: IEEE) p 387
  • Related Articles

    [1]Bingyan CHEN (陈秉岩), Xiangxiang GAO (高香香), Ke CHEN (陈可), Changyu LIU (刘昌裕), Qinshu LI (李沁书), Wei SU (苏巍), Yongfeng JIANG (蒋永锋), Xiang HE (何湘), Changping ZHU (朱昌平), Juntao FEI (费峻涛). Regulation characteristics of oxide generation and formaldehyde removal by using volume DBD reactor[J]. Plasma Science and Technology, 2018, 20(2): 24009-024009. DOI: 10.1088/2058-6272/aa9b7a
    [2]Dan ZHAO (赵丹), Feng YU (于锋), Amin ZHOU (周阿敏), Cunhua MA (马存花), Bin DAI (代斌). High-efficiency removal of NOx using dielectric barrier discharge nonthermal plasma with water as an outer electrode[J]. Plasma Science and Technology, 2018, 20(1): 14020-014020. DOI: 10.1088/2058-6272/aa861c
    [3]Hongshan ZHU (祝宏山), Shengxia DUAN (段升霞), Lei CHEN (陈磊), Ahmed ALSAEDI, Tasawar HAYAT, Jiaxing LI (李家星). Plasma-induced grafting of acrylic acid on bentonite for the removal of U(VI) from aqueous solution[J]. Plasma Science and Technology, 2017, 19(11): 115501. DOI: 10.1088/2058-6272/aa8168
    [4]Qi WANG (王奇), Yanhui WANG (王艳辉), Haochen WANG (王灏宸), Zhanhui WANG (王占辉), Hongbin DING (丁洪斌). Investigation of NO removal using a pulseassisted RF discharge[J]. Plasma Science and Technology, 2017, 19(6): 64013-064013. DOI: 10.1088/2058-6272/aa607b
    [5]Abhishek GUPTA, Suhas S JOSHI. Modelling effect of magnetic field on material removal in dry electrical discharge machining[J]. Plasma Science and Technology, 2017, 19(2): 25505-025505. DOI: 10.1088/2058-6272/19/2/025505
    [6]WANG Jingting (王婧婷), CAO Xu (曹栩), ZHANG Renxi (张仁熙), GONG Ting (龚挺), HOU Huiqi (侯惠奇), CHEN Shanping (陈善平), ZHANG Ruina (张瑞娜). Effect of Water Vapor on Toluene Removal in Catalysis-DBD Plasma Reactors[J]. Plasma Science and Technology, 2016, 18(4): 370-375. DOI: 10.1088/1009-0630/18/4/07
    [7]ZHOU Nengtao(周能涛), WU Jiefeng(吴杰峰), ZHANG Ping(张平), WANG Xueqin(王学勤), LU Yu(卢禹). A Nickel Coating Removal Process for ITER Superconducting Cables[J]. Plasma Science and Technology, 2014, 16(5): 532-539. DOI: 10.1088/1009-0630/16/5/15
    [8]JI Puhui (吉普辉), QU Guangzhou (屈广周), LI Jie (李杰). Effects of Dielectric Barrier Discharge Plasma Treatment on Pentachlorophenol Removal of Granular Activated Carbon[J]. Plasma Science and Technology, 2013, 15(10): 1059-1065. DOI: 10.1088/1009-0630/15/10/18
    [9]Sankarsan Mohapatro, B S Rajanikanth. Study of Pulsed Plasma in a Crossed Flow Dielectric Barrier Discharge Reactor for Improvement of NOx Removal in Raw Diesel Engine Exhaust[J]. Plasma Science and Technology, 2011, 13(1): 82-87.
    [10]ZHANG Yue, LI Duan, WANG Hongchang. Removal of Volatile Organic Compounds (VOCs) Mixture by Multi-Pin-Mesh Corona Discharge Combined with Pulsed High-Voltage[J]. Plasma Science and Technology, 2010, 12(6): 702-707.
  • Cited by

    Periodical cited type(7)

    1. Sun, T., Jiang, X., Li, Z. et al. Characterization of fast ion loss in the EHL-2 spherical torus. Plasma Science and Technology, 2025, 27(2): 024002. DOI:10.1088/2058-6272/ad8dfb
    2. Wang, F., Gu, X., Hua, J. et al. Divertor heat flux challenge and mitigation in the EHL-2 spherical torus. Plasma Science and Technology, 2025, 27(2): 024009. DOI:10.1088/2058-6272/adadb8
    3. Jiang, X., Shi, Y., Song, S. et al. Physics design of current drive and strategy of heating system for EHL-2 spherical torus. Plasma Science and Technology, 2025, 27(2): 024012. DOI:10.1088/2058-6272/adae71
    4. Wang, Y., Li, K., Huang, Z. et al. Predictions of H-mode access and edge pedestal instability in the EHL-2 spherical torus. Plasma Science and Technology, 2025, 27(2): 024005. DOI:10.1088/2058-6272/ad9f27
    5. Shi, Y., Song, X., Guo, D. et al. Strategy and experimental progress of the EXL-50U spherical torus in support of the EHL-2 project. Plasma Science and Technology, 2025, 27(2): 024003. DOI:10.1088/2058-6272/ad9e8f
    6. Li, Z., Sun, T., Liu, B. et al. Evaluation of thermal and beam-thermal p-11B fusion reactions in the EHL-2 spherical torus. Plasma Science and Technology, 2025, 27(2): 024004. DOI:10.1088/2058-6272/ad9da2
    7. Dong, L., Li, L., Liu, W. et al. Instabilities of ideal magnetohydrodynamics mode and neoclassical tearing mode stabilization by electron cyclotron current drive for EHL-2 spherical torus. Plasma Science and Technology, 2025, 27(2): 024006. DOI:10.1088/2058-6272/ada421

    Other cited types(0)

Catalog

    Article views (181) PDF downloads (283) Cited by(7)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return