Advanced Search+
Juan LI (李娟), Shenghui FU (付省辉), Yurou YANG (杨雨柔), Zhenfeng DING (丁振峰). On abnormal behaviors of ion beam extracted from electron cyclotron resonance ion thruster driven by rod antenna in cross magnetic field[J]. Plasma Science and Technology, 2021, 23(8): 85506-085506. DOI: 10.1088/2058-6272/ac061a
Citation: Juan LI (李娟), Shenghui FU (付省辉), Yurou YANG (杨雨柔), Zhenfeng DING (丁振峰). On abnormal behaviors of ion beam extracted from electron cyclotron resonance ion thruster driven by rod antenna in cross magnetic field[J]. Plasma Science and Technology, 2021, 23(8): 85506-085506. DOI: 10.1088/2058-6272/ac061a

On abnormal behaviors of ion beam extracted from electron cyclotron resonance ion thruster driven by rod antenna in cross magnetic field

Funds: This work was partially supported by National Natural Science Foundation of China (No. 11975070) and Open Funds for Science and Technology on Vacuum Technology and Physics Laboratory, Lanzhou Institute of Physics (No. zwk1609).
More Information
  • Received Date: March 04, 2021
  • Revised Date: May 21, 2021
  • Accepted Date: May 26, 2021
  • In a 2.45 GHz electron cyclotron resonance (ECR) ion thruster powered with rod antenna under a cross magnetic field, abnormal behaviours such as sudden drop of ion beam current (Ib) and larger increasing-rate of Ib in the high microwave power (Pw) discharges at high gas flow rates were observed. A differential method was proposed to reveal the changes in the radial profiles of gray values extracted from the end-view discharge images. The increasing-rate of Ib with respect to Pw was used to evaluate efficiencies of ion production and transport. Analyses indicate that discharges are dominantly sustained by ordinary wave via electron heating in the electron plasma resonance layer that can shift along the rod-antenna, and extraordinary wave can only ignite a discharge in the ECR layer in the low gas flow rate regime. In terms of the confinement region defined by the magnetic field lines intercepting with the screen grid, the confinement region of the optimized 2.45 GHz cross magnetic field takes the shape of hourglass, enabling the high increasing-rate of Ib with respect to Pw in high power discharges at high gas flow rates. Correlated with the accompanied bright boundary layer appearing in the differentiated image, the sudden drop of Ib in the low gas flow rate regime is attributed to the discharge ignited by the enhanced extraordinary wave in the ECR layer neighbouring the narrowest confinement region, where the produced ions can promptly enter the loss region.
  • [1]
    Toyoda Y et al 2008 An ion machined accelerator grid for the ECR ion thruster μ20 Proc. of the 44th AIAA/ASME/SAE/ASEE Joint Propulsion Conf. & Exhibit (Hartford) (AIAA)
    [2]
    Nishiyama K et al 2008 Feasibility study on performance enhancement options for the ECR ion thruster μ10 Proc.44th AIAA/ASME/SAE/ASEE Joint Propulsion Conf. & Exhibit (Hartford) (AIAA)
    [3]
    Ke Y J et al 2017 Plasma Sci. Technol. 19 095503
    [4]
    Yang J et al 2018 Plasma Sci. Technol. 20 085402
    [5]
    Yamamoto N et al 2006 AIAA-2006-5177
    [6]
    Dey I et al 2013 IEPC-2013-223 (http://electricrocket.org/IEPC/96st1j4d.pdf)
    [7]
    Koizumi H and Kuninaka H 2010 AIAA-2010-6617
    [8]
    Coral G et al 2018 Plasma Sources Sci. Technol. 27 095015
    [9]
    Tani Y et al 2019 Acta Astronautical 157 425
    [10]
    Yamashita Y 2019 Phys. Plasma 26 073510
    [11]
    Nishiyama K et al 2009 IEPC-2009-21 (http://electricrocket.org/IEPC/IEPC-2009-021.pdf)
    [12]
    Takao Y et al 2012 IEEE 2012 Int. Conf. on Renewable Energy Research and Application (https://doi.org/10.1109/ICRERA.2012.6477330)
    [13]
    Fu S H et al 2020 IEEE Trans. Plasma Sci. 48 676
    [14]
    Dey I et al 2015 Rev. Sci. Instrum. 86 123505
    [15]
    Dey I et al 2014 Phys. Plasma 21 093502
    [16]
    Sercel J C 1987 AIAA-1987-1477
    [17]
    Kuninaka H et al 2007 J. Propul. Power 23 544
    [18]
    Mazouffre S 2016 Plasma Sources Sci. Technol. 25 033002
    [19]
    Yamamoto N et al 2007 J. Appl. Phys. 102 123304
    [20]
    Funaki I et al 2004 J. Propul. Power 20 718
    [21]
    Tani Y et al 2020 Acta Astronautica 176 77
    [22]
    Kamis Y E and Celik M 2015 AIAA-2015-3826
    [23]
    COMSOL, Ver. 5.6 (http://cn.comsol.com)
    [24]
    Image J, Ver. 1.52v (https://imagej.en.softonic.com)
    [25]
    Meeks W C and Rove J L 2014 IEEE Trans. Plasma Sci. 42 1385
    [26]
    Tristant P et al 2001 Thin Solid Films 390 51
    [27]
    Koizumi H and Kuninaka H 2010 J. Propul. Power 26 601
    [28]
    Fu S H and Ding Z F 2021 Phys. Plasma 28 033510
    [29]
    Nishiyama K and Kuninaka H 2006 Thin Solid Films 506 588
    [30]
    Kataharada H et al 2006 Thin Solid Films 506 605
    [31]
    Liberman M A and Lichtenberg A J 2005 Principles of Plasma Discharges and Materials Processing 2nd end (New York:Wiley)
    [32]
    Mascali D et al 2017 EPJ Web of Conf. vol 157, p 03054
    [33]
    Porto J C and Elias P Q 2019 IEPC-2019-232
    [34]
    Liu Y G et al 2018 Nucl. Sci. Technol. 29 126
    [35]
    Miyamoto K 2016 Waves in cold plasmas Plasma Physics for Controlled Fusion (Springer Series on Atomic, Optical, and Plasma Physics ) vol 92 (Berlin: Springer) p 175
    [36]
    Sugai H et al 1998 Plasma Sources Sci. Technol. 7 192
    [37]
    Oberdorfer M et al 2008 Nucl. Instrum. Methods Phys. Res. B 266 4788
  • Related Articles

    [1]Wei LIU (刘伟), Chundong HU (胡纯栋), Sheng LIU (刘胜), Shihua SONG (宋士花), Jinxin WANG (汪金新), Yan WANG (王艳), Yuanzhe ZHAO (赵远哲), LizhenLIANG (梁立振). Development of data acquisition and over-current protection systems for a suppressor-grid current with a neutral-beam ion source[J]. Plasma Science and Technology, 2017, 19(12): 125605. DOI: 10.1088/2058-6272/aa8cc1
    [2]Yizhou JIN (金逸舟), Juan YANG (杨涓), Jun SUN (孙俊), Xianchuang LIU (刘宪闯), Yizhi HUANG (黄益智). Experiment and analysis of the neutralization of the electron cyclotron resonance ion thruster[J]. Plasma Science and Technology, 2017, 19(10): 105502. DOI: 10.1088/2058-6272/aa76d9
    [3]Yujun KE (柯于俊), Xinfeng SUN (孙新锋), Xuekang CHEN (陈学康), Licheng TIAN (田立成), Tianping ZHANG (张天平), Maofan ZHENG (郑茂繁), Yanhui JIA (贾艳辉), Haocheng JIANG (江豪成). Analysis of the primary experimental results on a 5 cm diameter ECR ion thruster[J]. Plasma Science and Technology, 2017, 19(9): 95503-095503. DOI: 10.1088/2058-6272/aa6d4c
    [4]Doo-Hee CHANG, Seung Ho JEONG, Min PARK, Tae-Seong KIM, Bong-Ki JUNG, Kwang Won LEE, Sang Ryul IN. Discharge Characteristics of Large-Area High-Power RF Ion Source for Positive and Negative Neutral Beam Injectors[J]. Plasma Science and Technology, 2016, 18(12): 1220-1225. DOI: 10.1088/1009-0630/18/12/13
    [5]ZHENG Ting (郑婷), WU Bin (吴斌), XU Liqing (徐立清), HU Chundong (胡纯栋), ZANG Qing (臧庆), DING Siye (丁斯晔), LI Yingying (李颖颖), WU Xingquan (伍兴权), WANG Jinfang (王进芳), SHEN Biao (沈飙), ZHONG Guoqiang (钟国强), LI Hao (李昊), SHI Tonghui (石同辉), EAST Team. Fishbone Mode Excited by Deeply Trapped Energetic Beam Ions in EAST[J]. Plasma Science and Technology, 2016, 18(6): 595-600. DOI: 10.1088/1009-0630/18/6/03
    [6]CHEN Yuqian (陈俞钱), HU Chundong (胡纯栋), XIE Yahong (谢亚红). Analysis of Effects of the Arc Voltage on Arc Discharges in a Cathode Ion Source of Neutral Beam Injector[J]. Plasma Science and Technology, 2016, 18(4): 453-456. DOI: 10.1088/1009-0630/18/4/21
    [7]XIE Yahong(谢亚红), HU Chundong(胡纯栋), LIU Sheng(刘胜), JIANG Caichao(蒋才超), LIANG Lizhen(梁立振), LI Jun(李军), XIE Yuanlai(谢远来), LIU Zhimin(刘智民). The Arc Regulation Characteristics of the High-Current Ion Source for the EAST Neutral Beam Injector[J]. Plasma Science and Technology, 2014, 16(4): 429-432. DOI: 10.1088/1009-0630/16/4/24
    [8]LIU Mingping (刘明萍), LIU Sanqiu (刘三秋), HE Jun (何俊), LIU Jie (刘杰). Electron Acceleration During the Mode Transition from Laser Wakefield to Plasma Wakefield Acceleration with a Dense-Plasma Wall[J]. Plasma Science and Technology, 2013, 15(9): 841-844. DOI: 10.1088/1009-0630/15/9/01
    [9]SHEN Wulin (沈武林), MA Zhibin (马志斌), TAN Bisong (谭必松), WU Jun (吴俊). Ion Heating in an ECR Plasma with a Magnetic Mirror Field[J]. Plasma Science and Technology, 2013, 15(6): 516-520. DOI: 10.1088/1009-0630/15/6/06
    [10]WANG Qiuying (王秋颖), LI Sen(李森), GU Fan(顾璠). Mechanism of Phase Transition from Liquid to Gas under Dielectric Barrier Discharge Plasma[J]. Plasma Science and Technology, 2010, 12(5): 585-591.
  • Cited by

    Periodical cited type(4)

    1. Svarnas, P.. Electron cyclotron resonance (ECR) plasmas: A topical review through representative results obtained over the last 60 years. Journal of Applied Physics, 2025, 137(7): 070701. DOI:10.1063/5.0249342
    2. Ding, Z.F., Yang, Y.R., Fu, S.H. Self-mode transition, oscillation and inverse hysteresis in ECR discharges. AIP Advances, 2023, 13(9): 095007. DOI:10.1063/5.0160039
    3. Fu, S., Ding, Z. Size Optimization of Disk Antenna for 5-cm ECR Ion Thruster. IEEE Transactions on Plasma Science, 2022, 50(6): 1803-1806. DOI:10.1109/TPS.2022.3169020
    4. Fu, S.H., Ding, Z.F. Effects of gas adsorbed on solid surface during gas breakdown in electron cyclotron resonance discharges. Plasma Sources Science and Technology, 2021, 30(12): 125004. DOI:10.1088/1361-6595/ac352d

    Other cited types(0)

Catalog

    Article views (113) PDF downloads (94) Cited by(4)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return